code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Overview

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?

Code for paper:

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, Mi Zhang.
NeurIPS 2020.

arch2vec
Top: The supervision signal for representation learning comes from the accuracies of architectures selected by the search strategies. Bottom (ours): Disentangling architecture representation learning and architecture search through unsupervised pre-training.

The repository is built upon pytorch_geometric, pybnn, nas_benchmarks, bananas.

1. Requirements

  • NVIDIA GPU, Linux, Python3
pip install -r requirements.txt

2. Experiments on NAS-Bench-101

Dataset preparation on NAS-Bench-101

Install nasbench and download nasbench_only108.tfrecord under ./data folder.

python preprocessing/gen_json.py

Data will be saved in ./data/data.json.

Pretraining

bash models/pretraining_nasbench101.sh

The pretrained model will be saved in ./pretrained/dim-16/.

arch2vec extraction

bash run_scripts/extract_arch2vec.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/.

Alternatively, you can download the pretrained arch2vec on NAS-Bench-101.

Run experiments of RL search on NAS-Bench-101

bash run_scripts/run_reinforce_supervised.sh 
bash run_scripts/run_reinforce_arch2vec.sh 

Search results will be saved in ./saved_logs/rl/dim16

Generate json file:

python plot_scripts/plot_reinforce_search_arch2vec.py 

Run experiments of BO search on NAS-Bench-101

bash run_scripts/run_dngo_supervised.sh 
bash run_scripts/run_dngo_arch2vec.sh 

Search results will be saved in ./saved_logs/bo/dim16.

Generate json file:

python plot_scripts/plot_dngo_search_arch2vec.py

Plot NAS comparison curve on NAS-Bench-101:

python plot_scipts/plot_nasbench101_comparison.py

Plot CDF comparison curve on NAS-Bench-101:

Download the search results from search_logs.

python plot_scripts/plot_cdf.py

3. Experiments on NAS-Bench-201

Dataset preparation

Download the NAS-Bench-201-v1_0-e61699.pth under ./data folder.

python preprocessing/nasbench201_json.py

Data corresponding to the three datasets in NAS-Bench-201 will be saved in folder ./data/ as cifar10_valid_converged.json, cifar100.json, ImageNet16_120.json.

Pretraining

bash models/pretraining_nasbench201.sh

The pretrained model will be saved in ./pretrained/dim-16/.

Note that the pretrained model is shared across the 3 datasets in NAS-Bench-201.

arch2vec extraction

bash run_scripts/extract_arch2vec_nasbench201.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/ as cifar10_valid_converged-arch2vec.pt, cifar100-arch2vec.pt and ImageNet16_120-arch2vec.pt.

Alternatively, you can download the pretrained arch2vec on NAS-Bench-201.

Run experiments of RL search on NAS-Bench-201

CIFAR-10: ./run_scripts/run_reinforce_arch2vec_nasbench201_cifar10_valid.sh
CIFAR-100: ./run_scripts/run_reinforce_arch2vec_nasbench201_cifar100.sh
ImageNet-16-120: ./run_scripts/run_reinforce_arch2vec_nasbench201_ImageNet.sh

Run experiments of BO search on NAS-Bench-201

CIFAR-10: ./run_scripts/run_bo_arch2vec_nasbench201_cifar10_valid.sh
CIFAR-100: ./run_scripts/run_bo_arch2vec_nasbench201_cifar100.sh
ImageNet-16-120: ./run_scripts/run_bo_arch2vec_nasbench201_ImageNet.sh

Summarize search result on NAS-Bench-201

python ./plot_scripts/summarize_nasbench201.py

The corresponding table will be printed to the console.

4. Experiments on DARTS Search Space

CIFAR-10 can be automatically downloaded by torchvision, ImageNet needs to be manually downloaded (preferably to a SSD) from http://image-net.org/download.

Random sampling 600,000 isomorphic graphs in DARTS space

python preprocessing/gen_isomorphism_graphs.py

Data will be saved in ./data/data_darts_counter600000.json.

Alternatively, you can download the extracted data_darts_counter600000.json.

Pretraining

bash models/pretraining_darts.sh

The pretrained model is saved in ./pretrained/dim-16/.

arch2vec extraction

bash run_scripts/extract_arch2vec_darts.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/arch2vec-darts.pt.

Alternatively, you can download the pretrained arch2vec on DARTS search space.

Run experiments of RL search on DARTS search space

bash run_scripts/run_reinforce_arch2vec_darts.sh

logs will be saved in ./darts-rl/.

Final search result will be saved in ./saved_logs/rl/dim16.

Run experiments of BO search on DARTS search space

bash run_scripts/run_bo_arch2vec_darts.sh

logs will be saved in ./darts-bo/ .

Final search result will be saved in ./saved_logs/bo/dim16.

Evaluate the learned cell on DARTS Search Space on CIFAR-10

python darts/cnn/train.py --auxiliary --cutout --arch arch2vec_rl --seed 1
python darts/cnn/train.py --auxiliary --cutout --arch arch2vec_bo --seed 1
  • Expected results (RL): 2.60% test error with 3.3M model params.
  • Expected results (BO): 2.48% test error with 3.6M model params.

Transfer learning on ImageNet

python darts/cnn/train_imagenet.py  --arch arch2vec_rl --seed 1 
python darts/cnn/train_imagenet.py  --arch arch2vec_bo --seed 1
  • Expected results (RL): 25.8% test error with 4.8M model params and 533M mult-adds.
  • Expected results (RL): 25.5% test error with 5.2M model params and 580M mult-adds.

Visualize the learned cell

python darts/cnn/visualize.py arch2vec_rl
python darts/cnn/visualize.py arch2vec_bo

5. Analyzing the results

Visualize a sequence of decoded cells from the latent space

Download pretrained supervised embeddings of nasbench101 and nasbench201.

bash plot_scripts/drawfig5-nas101.sh # visualization on nasbench-101
bash plot_scripts/drawfig5-nas201.sh # visualization on nasbench-201
bash plot_scripts/drawfig5-darts.sh  # visualization on darts

The plots will be saved in ./graphvisualization.

Plot distribution of L2 distance by edit distance

Install nas_benchmarks and download nasbench_full.tfrecord under the same directory.

python plot_scripts/distance_comparison_fig3.py

Latent space 2D visualization

bash plot_scripts/drawfig4.sh

the plots will be saved in ./density.

Predictive performance comparison

Download predicted_accuracy under saved_logs/.

python plot_scripts/pearson_plot_fig2.py

Citation

If you find this useful for your work, please consider citing:

@InProceedings{yan2020arch,
  title = {Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?},
  author = {Yan, Shen and Zheng, Yu and Ao, Wei and Zeng, Xiao and Zhang, Mi},
  booktitle = {NeurIPS},
  year = {2020}
}
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
PyTorch implementation of our paper: Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition

Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition, arxiv This is a PyTorch implementation of our paper. 1. Re

DamoCV 11 Nov 19, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

PyTorch Infer Utils This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model infer

Alex Gorodnitskiy 11 Mar 20, 2022
An imperfect information game is a type of game with asymmetric information

DecisionHoldem An imperfect information game is a type of game with asymmetric information. Compared with perfect information game, imperfect informat

Decision AI 25 Dec 23, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Code for the paper "Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds" (ICCV 2021)

Spatio-temporal Self-Supervised Representation Learning for 3D Point Clouds This is the official code implementation for the paper "Spatio-temporal Se

Hesper 63 Jan 05, 2023
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022