code for paper "Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?"

Overview

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?

Code for paper:

Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?
Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, Mi Zhang.
NeurIPS 2020.

arch2vec
Top: The supervision signal for representation learning comes from the accuracies of architectures selected by the search strategies. Bottom (ours): Disentangling architecture representation learning and architecture search through unsupervised pre-training.

The repository is built upon pytorch_geometric, pybnn, nas_benchmarks, bananas.

1. Requirements

  • NVIDIA GPU, Linux, Python3
pip install -r requirements.txt

2. Experiments on NAS-Bench-101

Dataset preparation on NAS-Bench-101

Install nasbench and download nasbench_only108.tfrecord under ./data folder.

python preprocessing/gen_json.py

Data will be saved in ./data/data.json.

Pretraining

bash models/pretraining_nasbench101.sh

The pretrained model will be saved in ./pretrained/dim-16/.

arch2vec extraction

bash run_scripts/extract_arch2vec.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/.

Alternatively, you can download the pretrained arch2vec on NAS-Bench-101.

Run experiments of RL search on NAS-Bench-101

bash run_scripts/run_reinforce_supervised.sh 
bash run_scripts/run_reinforce_arch2vec.sh 

Search results will be saved in ./saved_logs/rl/dim16

Generate json file:

python plot_scripts/plot_reinforce_search_arch2vec.py 

Run experiments of BO search on NAS-Bench-101

bash run_scripts/run_dngo_supervised.sh 
bash run_scripts/run_dngo_arch2vec.sh 

Search results will be saved in ./saved_logs/bo/dim16.

Generate json file:

python plot_scripts/plot_dngo_search_arch2vec.py

Plot NAS comparison curve on NAS-Bench-101:

python plot_scipts/plot_nasbench101_comparison.py

Plot CDF comparison curve on NAS-Bench-101:

Download the search results from search_logs.

python plot_scripts/plot_cdf.py

3. Experiments on NAS-Bench-201

Dataset preparation

Download the NAS-Bench-201-v1_0-e61699.pth under ./data folder.

python preprocessing/nasbench201_json.py

Data corresponding to the three datasets in NAS-Bench-201 will be saved in folder ./data/ as cifar10_valid_converged.json, cifar100.json, ImageNet16_120.json.

Pretraining

bash models/pretraining_nasbench201.sh

The pretrained model will be saved in ./pretrained/dim-16/.

Note that the pretrained model is shared across the 3 datasets in NAS-Bench-201.

arch2vec extraction

bash run_scripts/extract_arch2vec_nasbench201.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/ as cifar10_valid_converged-arch2vec.pt, cifar100-arch2vec.pt and ImageNet16_120-arch2vec.pt.

Alternatively, you can download the pretrained arch2vec on NAS-Bench-201.

Run experiments of RL search on NAS-Bench-201

CIFAR-10: ./run_scripts/run_reinforce_arch2vec_nasbench201_cifar10_valid.sh
CIFAR-100: ./run_scripts/run_reinforce_arch2vec_nasbench201_cifar100.sh
ImageNet-16-120: ./run_scripts/run_reinforce_arch2vec_nasbench201_ImageNet.sh

Run experiments of BO search on NAS-Bench-201

CIFAR-10: ./run_scripts/run_bo_arch2vec_nasbench201_cifar10_valid.sh
CIFAR-100: ./run_scripts/run_bo_arch2vec_nasbench201_cifar100.sh
ImageNet-16-120: ./run_scripts/run_bo_arch2vec_nasbench201_ImageNet.sh

Summarize search result on NAS-Bench-201

python ./plot_scripts/summarize_nasbench201.py

The corresponding table will be printed to the console.

4. Experiments on DARTS Search Space

CIFAR-10 can be automatically downloaded by torchvision, ImageNet needs to be manually downloaded (preferably to a SSD) from http://image-net.org/download.

Random sampling 600,000 isomorphic graphs in DARTS space

python preprocessing/gen_isomorphism_graphs.py

Data will be saved in ./data/data_darts_counter600000.json.

Alternatively, you can download the extracted data_darts_counter600000.json.

Pretraining

bash models/pretraining_darts.sh

The pretrained model is saved in ./pretrained/dim-16/.

arch2vec extraction

bash run_scripts/extract_arch2vec_darts.sh

The extracted arch2vec will be saved in ./pretrained/dim-16/arch2vec-darts.pt.

Alternatively, you can download the pretrained arch2vec on DARTS search space.

Run experiments of RL search on DARTS search space

bash run_scripts/run_reinforce_arch2vec_darts.sh

logs will be saved in ./darts-rl/.

Final search result will be saved in ./saved_logs/rl/dim16.

Run experiments of BO search on DARTS search space

bash run_scripts/run_bo_arch2vec_darts.sh

logs will be saved in ./darts-bo/ .

Final search result will be saved in ./saved_logs/bo/dim16.

Evaluate the learned cell on DARTS Search Space on CIFAR-10

python darts/cnn/train.py --auxiliary --cutout --arch arch2vec_rl --seed 1
python darts/cnn/train.py --auxiliary --cutout --arch arch2vec_bo --seed 1
  • Expected results (RL): 2.60% test error with 3.3M model params.
  • Expected results (BO): 2.48% test error with 3.6M model params.

Transfer learning on ImageNet

python darts/cnn/train_imagenet.py  --arch arch2vec_rl --seed 1 
python darts/cnn/train_imagenet.py  --arch arch2vec_bo --seed 1
  • Expected results (RL): 25.8% test error with 4.8M model params and 533M mult-adds.
  • Expected results (RL): 25.5% test error with 5.2M model params and 580M mult-adds.

Visualize the learned cell

python darts/cnn/visualize.py arch2vec_rl
python darts/cnn/visualize.py arch2vec_bo

5. Analyzing the results

Visualize a sequence of decoded cells from the latent space

Download pretrained supervised embeddings of nasbench101 and nasbench201.

bash plot_scripts/drawfig5-nas101.sh # visualization on nasbench-101
bash plot_scripts/drawfig5-nas201.sh # visualization on nasbench-201
bash plot_scripts/drawfig5-darts.sh  # visualization on darts

The plots will be saved in ./graphvisualization.

Plot distribution of L2 distance by edit distance

Install nas_benchmarks and download nasbench_full.tfrecord under the same directory.

python plot_scripts/distance_comparison_fig3.py

Latent space 2D visualization

bash plot_scripts/drawfig4.sh

the plots will be saved in ./density.

Predictive performance comparison

Download predicted_accuracy under saved_logs/.

python plot_scripts/pearson_plot_fig2.py

Citation

If you find this useful for your work, please consider citing:

@InProceedings{yan2020arch,
  title = {Does Unsupervised Architecture Representation Learning Help Neural Architecture Search?},
  author = {Yan, Shen and Zheng, Yu and Ao, Wei and Zeng, Xiao and Zhang, Mi},
  booktitle = {NeurIPS},
  year = {2020}
}
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ā € A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
Generic Foreground Segmentation in Images

Pixel Objectness The following repository contains pretrained model for pixel objectness. Please visit our project page for the paper and visual resul

Suyog Jain 157 Nov 21, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Code examples and benchmarks from the paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective"

Code For the Paper "Understanding Entropy Coding With Asymmetric Numeral Systems (ANS): a Statistician's Perspective" Author: Robert Bamler Date: 22 D

4 Nov 02, 2022
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
AgML is a comprehensive library for agricultural machine learning

AgML is a comprehensive library for agricultural machine learning. Currently, AgML provides access to a wealth of public agricultural datasets for common agricultural deep learning tasks.

Plant AI and Biophysics Lab 1 Jul 07, 2022
PlaidML is a framework for making deep learning work everywhere.

A platform for making deep learning work everywhere. Documentation | Installation Instructions | Building PlaidML | Contributing | Troubleshooting | R

PlaidML 4.5k Jan 02, 2023
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Benchmarks for the Optimal Power Flow Problem

Power Grid Lib - Optimal Power Flow This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emergi

A Library of IEEE PES Power Grid Benchmarks 207 Dec 08, 2022
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments šŸ’¹ & sharing šŸ˜€ !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022