[NeurIPS 2020] This project provides a strong single-stage baseline for Long-Tailed Classification, Detection, and Instance Segmentation (LVIS).

Overview

A Strong Single-Stage Baseline for Long-Tailed Problems

Python PyTorch

This project provides a strong single-stage baseline for Long-Tailed Classification (under ImageNet-LT, Long-Tailed CIFAR-10/-100 datasets), Detection, and Instance Segmentation (under LVIS dataset). It is also a PyTorch implementation of the NeurIPS 2020 paper Long-Tailed Classification by Keeping the Good and Removing the Bad Momentum Causal Effect, which proposes a general solution to remove the bad momentum causal effect for a variety of Long-Tailed Recognition tasks. The codes are organized into three folders:

  1. The classification folder supports long-tailed classification on ImageNet-LT, Long-Tailed CIFAR-10/CIFAR-100 datasets.
  2. The lvis_old folder (deprecated) supports long-tailed object detection and instance segmentation on LVIS V0.5 dataset, which is built on top of mmdet V1.1.
  3. The latest version of long-tailed detection and instance segmentation is under lvis1.0 folder. Since both LVIS V0.5 and mmdet V1.1 are no longer available on their homepages, we have to re-implement our method on mmdet V2.4 using LVIS V1.0 annotations.

Slides

If you want to present our work in your group meeting / introduce it to your friends / seek answers for some ambiguous parts in the paper, feel free to use our slides. It has two versions: one-hour full version and five-minute short version.

Installation

The classification part allows the lower version of the following requirements. However, in detection and instance segmentation (mmdet V2.4), I tested some lower versions of python and pytorch, which are all failed. If you want to try other environments, please check the updates of mmdetection.

Requirements:

  • PyTorch >= 1.6.0
  • Python >= 3.7.0
  • CUDA >= 10.1
  • torchvision >= 0.7.0
  • gcc version >= 5.4.0

Step-by-step installation

conda create -n longtail pip python=3.7 -y
source activate longtail
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
pip install pyyaml tqdm matplotlib sklearn h5py

# download the project
git clone https://github.com/KaihuaTang/Long-Tailed-Recognition.pytorch.git
cd Long-Tailed-Recognition.pytorch

# the following part is only used to build mmdetection 
cd lvis1.0
pip install mmcv-full
pip install mmlvis
pip install -r requirements/build.txt
pip install -v -e .  # or "python setup.py develop"

Additional Notes

When we wrote the paper, we are using lvis V0.5 and mmdet V1.1 for our long-tailed instance segmentation experiments, but they've been deprecated by now. If you want to reproduce our results on lvis V0.5, you have to find a way to build mmdet V1.1 environments and use the code in lvis_old folder.

Datasets

ImageNet-LT

ImageNet-LT is a long-tailed subset of original ImageNet, you can download the dataset from its homepage. After you download the dataset, you need to change the data_root of 'ImageNet' in ./classification/main.py file.

CIFAR-10/-100

When you run the code for the first time, our dataloader will automatically download the CIFAR-10/-100. You need to set the data_root in ./classification/main.py to the path where you want to put all CIFAR data.

LVIS

Large Vocabulary Instance Segmentation (LVIS) dataset uses the COCO 2017 train, validation, and test image sets. If you have already downloaded the COCO images, you only need to download the LVIS annotations. LVIS val set contains images from COCO 2017 train in addition to the COCO 2017 val split.

You need to put all the annotations and images under ./data/LVIS like this:

data
  |-- LVIS
    |--lvis_v1_train.json
    |--lvis_v1_val.json
      |--images
        |--train2017
          |--.... (images)
        |--test2017
          |--.... (images)
        |--val2017
          |--.... (images)

Getting Started

For long-tailed classification, please go to [link]

For long-tailed object detection and instance segmentation, please go to [link]

Advantages of the Proposed Method

  • Compared with previous state-of-the-art Decoupling, our method only requires one-stage training.
  • Most of the existing methods for long-tailed problems are using data distribution to conduct re-sampling or re-weighting during training, which is based on an inappropriate assumption that you can know the future distribution before you start to learn. Meanwhile, the proposed method doesn't need to know the data distribution during training, we only need to use an average feature for inference after we train the model.
  • Our method can be easily transferred to any tasks. We outperform the previous state-of-the-arts Decoupling, BBN, OLTR in image classification, and we achieve better results than 2019 Winner of LVIS challenge EQL in long-tailed object detection and instance segmentation (under the same settings with even fewer GPUs).

Citation

If you find our paper or this project helps your research, please kindly consider citing our paper in your publications.

@inproceedings{tang2020longtailed,
  title={Long-Tailed Classification by Keeping the Good and Removing the Bad Momentum Causal Effect},
  author={Tang, Kaihua and Huang, Jianqiang and Zhang, Hanwang},
  booktitle= {NeurIPS},
  year={2020}
}
Owner
Kaihua Tang
@kaihuatang.github.io/
Kaihua Tang
auto-tuning momentum SGD optimizer

YellowFin YellowFin is an auto-tuning optimizer based on momentum SGD which requires no manual specification of learning rate and momentum. It measure

Jian Zhang 288 Nov 19, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
The MLOps platform for innovators 🚀

​ DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training datas

9 Jan 03, 2023
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Arquitetura e Desenho de Software.

S203 Este é um repositório dedicado às aulas de Arquitetura e Desenho de Software, cuja sigla é "S203". E agora, José? Como não tenho muito a falar aq

Fabio 7 Oct 23, 2021
A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers.

ViTGAN: Training GANs with Vision Transformers A PyTorch implementation of ViTGAN based on paper ViTGAN: Training GANs with Vision Transformers. Refer

Hong-Jia Chen 127 Dec 23, 2022
Baseline powergrid model for NY

Baseline-powergrid-model-for-NY Table of Contents About The Project Built With Usage License Contact Acknowledgements About The Project As the urgency

Anderson Energy Lab at Cornell 6 Nov 24, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
MTCNN face detection implementation for TensorFlow, as a PIP package.

MTCNN Implementation of the MTCNN face detector for Keras in Python3.4+. It is written from scratch, using as a reference the implementation of MTCNN

Iván de Paz Centeno 1.9k Dec 30, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021