Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Overview

Open-CyKG

Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph

Journal Paper Google Scholar LinkedIn

Model Description

Open-CyKG is a framework that is constructed using an attention-based neural Open Information Extraction (OIE) model to extract valuable cyber threat information from unstructured Advanced Persistent Threat (APT) reports. More specifically, we first identify relevant entities by developing a neural cybersecurity Named Entity Recognizer (NER) that aids in labeling relation triples generated by the OIE model. Afterwards, the extracted structured data is canonicalized to build the KG by employing fusion techniques using word embeddings.

Datasets

  • OIE dataset: Malware DB
  • NER dataset: Microsoft Security Bulletins (MSB) and Cyber Threat Intelligence reports (CTI)

For dataset files please refer to the appropiate refrence in the paper.

Code:

Dependencies

  • Compatible with Python 3.x

  • Dependencies can be installed as specified in Block 1 in the respective notebooks.

  • All the code was implemented on Google Colab using GPU. Please ensure that you are using the version as specified in the "Ïnstallion and Drives" block.

  • Make sure to adapt the code based on your dataset and choice of word embeddings.

  • To utlize CRF in NER model using Keras; plase make sure to:

    -- Use tensorFlow version and Keras version:

    -- In tensorflow_backend.py and Optimizer.py write down those 2 liness ---> then restart runtime

      ```
      import tensorflow.compat.v1 as tf
      tf.disable_v2_behavior()
      ```
    

For more details on the how the exact process was carried out and the final hyper-parameters used; please refer to Open-CyKG paper.

Citing:

Please cite Open-CyKG if you use any of this material in your work.

I. Sarhan and M. Spruit, Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph, Knowledge-Based Systems (2021), doi: https://doi.org/10.1016/j.knosys.2021.107524.

@article{SARHAN2021107524,
title = {Open-CyKG: An Open Cyber Threat Intelligence Knowledge Graph},
journal = {Knowledge-Based Systems},
volume = {233},
pages = {107524},
year = {2021},
issn = {0950-7051},
doi = {https://doi.org/10.1016/j.knosys.2021.107524},
url = {https://www.sciencedirect.com/science/article/pii/S0950705121007863},
author = {Injy Sarhan and Marco Spruit},
keywords = {Cyber Threat Intelligence, Knowledge Graph, Named Entity Recognition, Open Information Extraction, Attention network},
abstract = {Instant analysis of cybersecurity reports is a fundamental challenge for security experts as an immeasurable amount of cyber information is generated on a daily basis, which necessitates automated information extraction tools to facilitate querying and retrieval of data. Hence, we present Open-CyKG: an Open Cyber Threat Intelligence (CTI) Knowledge Graph (KG) framework that is constructed using an attention-based neural Open Information Extraction (OIE) model to extract valuable cyber threat information from unstructured Advanced Persistent Threat (APT) reports. More specifically, we first identify relevant entities by developing a neural cybersecurity Named Entity Recognizer (NER) that aids in labeling relation triples generated by the OIE model. Afterwards, the extracted structured data is canonicalized to build the KG by employing fusion techniques using word embeddings. As a result, security professionals can execute queries to retrieve valuable information from the Open-CyKG framework. Experimental results demonstrate that our proposed components that build up Open-CyKG outperform state-of-the-art models.11Our implementation of Open-CyKG is publicly available at https://github.com/IS5882/Open-CyKG.}
}

Implementation Refrences:

  • Contextualized word embediings: link to Flairs word embedding documentation, Hugging face link of all pretrained models https://huggingface.co/transformers/v2.3.0/pretrained_models.html
  • Functions in block 3&9 are originally refrenced from the work of Stanvosky et al. Please refer/cite his work, with exception of some modification in the functions Stanovsky, Gabriel, et al. "Supervised open information extraction." Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). 2018.
  • OIE implements Bahdanau attention (https://arxiv.org/pdf/1409.0473.pdf). Towards Data Science Blog
  • NER refrence blog
  • Knowledge Graph fusion motivated by the work of CESI Vashishth, Shikhar, Prince Jain, and Partha Talukdar. "Cesi: Canonicalizing open knowledge bases using embeddings and side information." Proceedings of the 2018 World Wide Web Conference. 2018..
  • Neo4J was used for Knowledge Graph visualization.

Please cite the appropriate reference(s) in your work

Owner
Injy Sarhan
Injy Sarhan
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
AirCode: A Robust Object Encoding Method

AirCode This repo contains source codes for the arXiv preprint "AirCode: A Robust Object Encoding Method" Demo Object matching comparison when the obj

Chen Wang 30 Dec 09, 2022
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
A Strong Baseline for Image Semantic Segmentation

A Strong Baseline for Image Semantic Segmentation Introduction This project is an open source semantic segmentation toolbox based on PyTorch. It is ba

Clark He 49 Sep 20, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
TipToiDog - Tip Toi Dog With Python

TipToiDog Was ist dieses Projekt? Meine 5-jährige Tochter spielt sehr gerne das

1 Feb 07, 2022
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
This is the official implementation for the paper "Heterogeneous Multi-player Multi-armed Bandits: Closing the Gap and Generalization" in NeurIPS 2021.

MPMAB_BEACON This is code used for the paper "Decentralized Multi-player Multi-armed Bandits: Beyond Linear Reward Functions", Neurips 2021. Requireme

Cong Shen Research Group 0 Oct 26, 2021
Empirical Study of Transformers for Source Code & A Simple Approach for Handling Out-of-Vocabulary Identifiers in Deep Learning for Source Code

Transformers for variable misuse, function naming and code completion tasks The official PyTorch implementation of: Empirical Study of Transformers fo

Bayesian Methods Research Group 56 Nov 15, 2022
GNN-based Recommendation Benchmark

GRecX A Fair Benchmark for GNN-based Recommendation Homepage and Documentation Homepage: Documentation: Paper: GRecX: An Efficient and Unified Benchma

73 Oct 17, 2022
[CVPR2021] DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datasets

DoDNet This repo holds the pytorch implementation of DoDNet: DoDNet: Learning to segment multi-organ and tumors from multiple partially labeled datase

116 Dec 12, 2022
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Simple-System-Convert--C--F - Simple System Convert With Python

Simple-System-Convert--C--F REQUIREMENTS Python version : 3 HOW TO USE Run the c

Jonathan Santos 2 Feb 16, 2022
Official repository for the CVPR 2021 paper "Learning Feature Aggregation for Deep 3D Morphable Models"

Deep3DMM Official repository for the CVPR 2021 paper Learning Feature Aggregation for Deep 3D Morphable Models. Requirements This code is tested on Py

38 Dec 27, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Transfer Learning Shootout for PyTorch's model zoo (torchvision)

pytorch-retraining Transfer Learning shootout for PyTorch's model zoo (torchvision). Load any pretrained model with custom final layer (num_classes) f

Alexander Hirner 169 Jun 29, 2022