Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Related tags

Deep Learningnglod
Overview

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces

Official code release for NGLOD. For technical details, please refer to:

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces
Towaki Takikawa*, Joey Litalien*, Kangxue Xin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler
In Computer Vision and Pattern Recognition (CVPR), 2021 (Oral)
[Paper] [Bibtex] [Project Page]

If you find this code useful, please consider citing:

@article{takikawa2021nglod,
    title = {Neural Geometric Level of Detail: Real-time Rendering with Implicit {3D} Shapes}, 
    author = {Towaki Takikawa and
              Joey Litalien and 
              Kangxue Yin and 
              Karsten Kreis and 
              Charles Loop and 
              Derek Nowrouzezahrai and 
              Alec Jacobson and 
              Morgan McGuire and 
              Sanja Fidler},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021},
}

New: Sparse training code with Kaolin now available in app/spc! Read more about it here

Directory Structure

sol-renderer contains our real-time rendering code.

sdf-net contains our training code.

Within sdf-net:

sdf-net/lib contains all of our core codebase.

sdf-net/app contains standalone applications that users can run.

Getting started

Python dependencies

The easiest way to get started is to create a virtual Python 3.8 environment:

conda create -n nglod python=3.8
conda activate nglod
pip install --upgrade pip
pip install -r ./infra/requirements.txt

The code also relies on OpenEXR, which requires a system library:

sudo apt install libopenexr-dev 
pip install pyexr

To see the full list of dependencies, see the requirements.

Building CUDA extensions

To build the corresponding CUDA kernels, run:

cd sdf-net/lib/extensions
chmod +x build_ext.sh && ./build_ext.sh

The above instructions were tested on Ubuntu 18.04/20.04 with CUDA 10.2/11.1.

Training & Rendering

Note. All following commands should be ran within the sdf-net directory.

Download sample data

To download a cool armadillo:

wget https://raw.githubusercontent.com/alecjacobson/common-3d-test-models/master/data/armadillo.obj -P data/

To download a cool matcap file:

wget https://raw.githubusercontent.com/nidorx/matcaps/master/1024/6E8C48_B8CDA7_344018_A8BC94.png -O data/matcap/green.png

Training from scratch

python app/main.py \
    --net OctreeSDF \
    --num-lods 5 \
    --dataset-path data/armadillo.obj \
    --epoch 250 \
    --exp-name armadillo

This will populate _results with TensorBoard logs.

Rendering the trained model

If you set custom network parameters in training, you need to also reflect them for the renderer.

For example, if you set --feature-dim 16 above, you need to set it here too.

python app/sdf_renderer.py \
    --net OctreeSDF \
    --num-lods 5 \
    --pretrained _results/models/armadillo.pth \
    --render-res 1280 720 \
    --shading-mode matcap \
    --lod 4

By default, this will populate _results with the rendered image.

If you want to export a .npz model which can be loaded into the C++ real-time renderer, add the argument --export path/file.npz. Note that the renderer only supports the base Neural LOD configuration (the default parameters with OctreeSDF).

Core Library Development Guide

To add new functionality, you will likely want to make edits to the files in lib.

We try our best to keep our code modular, such that key components such as trainer.py and renderer.py need not be modified very frequently to add new functionalities.

To add a new network architecture for an example, you can simply add a new Python file in lib/models that inherits from a base class of choice. You will probably only need to implement the sdf method which implements the forward pass, but you have the option to override other methods as needed if more custom operations are needed.

By default, the loss function used are defined in a CLI argument, which the code will automatically parse and iterate through each loss function. The network architecture class is similarly defined in the CLI argument; simply use the exact class name, and don't forget to add a line in __init__.py to resolve the namespace.

App Development Guide

To make apps that use the core library, add the sdf-net directory into the Python sys.path, so the modules can be loaded correctly. Then, you will likely want to inherit the same CLI parser defined in lib/options.py to save time. You can then add a new argument group app to the parser to add custom CLI arguments to be used in conjunction with the defaults. See app/sdf_renderer.py for an example.

Examples of things that are considered apps include, but are not limited to:

  • visualizers
  • training code
  • downstream applications

Third-Party Libraries

This code includes code derived from 3 third-party libraries, all distributed under the MIT License:

https://github.com/zekunhao1995/DualSDF

https://github.com/rogersce/cnpy

https://github.com/krrish94/nerf-pytorch

Acknowledgements

We would like to thank Jean-Francois Lafleche, Peter Shirley, Kevin Xie, Jonathan Granskog, Alex Evans, and Alex Bie at NVIDIA for interesting discussions throughout the project. We also thank Peter Shirley, Alexander Majercik, Jacob Munkberg, David Luebke, Jonah Philion and Jun Gao for their help with paper editing.

We also thank Clement Fuji Tsang for his help with the code release.

The structure of this repo was inspired by PIFu: https://github.com/shunsukesaito/PIFu

Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi

A tutorial showing how to set up TensorFlow's Object Detection API on the Raspberry Pi

Evan 1.1k Dec 26, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our n

58 Dec 23, 2022
SpineAI Bilsky Grading With Python

SpineAI-Bilsky-Grading SpineAI Paper with Code 📫 Contact Address correspondence to J.T.P.D.H. (e-mail: james_hallinan AT nuhs.edu.sg) Disclaimer This

<a href=[email protected]"> 2 Dec 16, 2021
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022
Preprossing-loan-data-with-NumPy - In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United States.

Preprossing-loan-data-with-NumPy In this project, I have cleaned and pre-processed the loan data that belongs to an affiliate bank based in the United

Dhawal Chitnavis 2 Jan 03, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Xi Dongbo 78 Nov 29, 2022
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
KGDet: Keypoint-Guided Fashion Detection (AAAI 2021)

KGDet: Keypoint-Guided Fashion Detection (AAAI 2021) This is an official implementation of the AAAI-2021 paper "KGDet: Keypoint-Guided Fashion Detecti

Qian Shenhan 35 Dec 29, 2022