Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Shapes (CVPR 2021 Oral)

Related tags

Deep Learningnglod
Overview

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces

Official code release for NGLOD. For technical details, please refer to:

Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D Surfaces
Towaki Takikawa*, Joey Litalien*, Kangxue Xin, Karsten Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson, Morgan McGuire, and Sanja Fidler
In Computer Vision and Pattern Recognition (CVPR), 2021 (Oral)
[Paper] [Bibtex] [Project Page]

If you find this code useful, please consider citing:

@article{takikawa2021nglod,
    title = {Neural Geometric Level of Detail: Real-time Rendering with Implicit {3D} Shapes}, 
    author = {Towaki Takikawa and
              Joey Litalien and 
              Kangxue Yin and 
              Karsten Kreis and 
              Charles Loop and 
              Derek Nowrouzezahrai and 
              Alec Jacobson and 
              Morgan McGuire and 
              Sanja Fidler},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2021},
}

New: Sparse training code with Kaolin now available in app/spc! Read more about it here

Directory Structure

sol-renderer contains our real-time rendering code.

sdf-net contains our training code.

Within sdf-net:

sdf-net/lib contains all of our core codebase.

sdf-net/app contains standalone applications that users can run.

Getting started

Python dependencies

The easiest way to get started is to create a virtual Python 3.8 environment:

conda create -n nglod python=3.8
conda activate nglod
pip install --upgrade pip
pip install -r ./infra/requirements.txt

The code also relies on OpenEXR, which requires a system library:

sudo apt install libopenexr-dev 
pip install pyexr

To see the full list of dependencies, see the requirements.

Building CUDA extensions

To build the corresponding CUDA kernels, run:

cd sdf-net/lib/extensions
chmod +x build_ext.sh && ./build_ext.sh

The above instructions were tested on Ubuntu 18.04/20.04 with CUDA 10.2/11.1.

Training & Rendering

Note. All following commands should be ran within the sdf-net directory.

Download sample data

To download a cool armadillo:

wget https://raw.githubusercontent.com/alecjacobson/common-3d-test-models/master/data/armadillo.obj -P data/

To download a cool matcap file:

wget https://raw.githubusercontent.com/nidorx/matcaps/master/1024/6E8C48_B8CDA7_344018_A8BC94.png -O data/matcap/green.png

Training from scratch

python app/main.py \
    --net OctreeSDF \
    --num-lods 5 \
    --dataset-path data/armadillo.obj \
    --epoch 250 \
    --exp-name armadillo

This will populate _results with TensorBoard logs.

Rendering the trained model

If you set custom network parameters in training, you need to also reflect them for the renderer.

For example, if you set --feature-dim 16 above, you need to set it here too.

python app/sdf_renderer.py \
    --net OctreeSDF \
    --num-lods 5 \
    --pretrained _results/models/armadillo.pth \
    --render-res 1280 720 \
    --shading-mode matcap \
    --lod 4

By default, this will populate _results with the rendered image.

If you want to export a .npz model which can be loaded into the C++ real-time renderer, add the argument --export path/file.npz. Note that the renderer only supports the base Neural LOD configuration (the default parameters with OctreeSDF).

Core Library Development Guide

To add new functionality, you will likely want to make edits to the files in lib.

We try our best to keep our code modular, such that key components such as trainer.py and renderer.py need not be modified very frequently to add new functionalities.

To add a new network architecture for an example, you can simply add a new Python file in lib/models that inherits from a base class of choice. You will probably only need to implement the sdf method which implements the forward pass, but you have the option to override other methods as needed if more custom operations are needed.

By default, the loss function used are defined in a CLI argument, which the code will automatically parse and iterate through each loss function. The network architecture class is similarly defined in the CLI argument; simply use the exact class name, and don't forget to add a line in __init__.py to resolve the namespace.

App Development Guide

To make apps that use the core library, add the sdf-net directory into the Python sys.path, so the modules can be loaded correctly. Then, you will likely want to inherit the same CLI parser defined in lib/options.py to save time. You can then add a new argument group app to the parser to add custom CLI arguments to be used in conjunction with the defaults. See app/sdf_renderer.py for an example.

Examples of things that are considered apps include, but are not limited to:

  • visualizers
  • training code
  • downstream applications

Third-Party Libraries

This code includes code derived from 3 third-party libraries, all distributed under the MIT License:

https://github.com/zekunhao1995/DualSDF

https://github.com/rogersce/cnpy

https://github.com/krrish94/nerf-pytorch

Acknowledgements

We would like to thank Jean-Francois Lafleche, Peter Shirley, Kevin Xie, Jonathan Granskog, Alex Evans, and Alex Bie at NVIDIA for interesting discussions throughout the project. We also thank Peter Shirley, Alexander Majercik, Jacob Munkberg, David Luebke, Jonah Philion and Jun Gao for their help with paper editing.

We also thank Clement Fuji Tsang for his help with the code release.

The structure of this repo was inspired by PIFu: https://github.com/shunsukesaito/PIFu

Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
🛠 All-in-one web-based IDE specialized for machine learning and data science.

All-in-one web-based development environment for machine learning Getting Started • Features & Screenshots • Support • Report a Bug • FAQ • Known Issu

Machine Learning Tooling 2.9k Jan 09, 2023
traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation toolbox based on PyTorch.

traiNNer traiNNer is an open source image and video restoration (super-resolution, denoising, deblurring and others) and image to image translation to

202 Jan 04, 2023
Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

2.5k Dec 31, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
Dynamic vae - Dynamic VAE algorithm is used for anomaly detection of battery data

Dynamic VAE frame Automatic feature extraction can be achieved by probability di

10 Oct 07, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
Tooling for GANs in TensorFlow

TensorFlow-GAN (TF-GAN) TF-GAN is a lightweight library for training and evaluating Generative Adversarial Networks (GANs). Can be installed with pip

803 Dec 24, 2022
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
JstDoS - HTTP Protocol Stack Remote Code Execution Vulnerability

jstDoS If you are going to skid that, please give credits ! ^^ ¿How works? This

apolo 4 Feb 11, 2022
Get started with Machine Learning with Python - An introduction with Python programming examples

Machine Learning With Python Get started with Machine Learning with Python An engaging introduction to Machine Learning with Python TL;DR Download all

Learn Python with Rune 130 Jan 02, 2023
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Human annotated noisy labels for CIFAR-10 and CIFAR-100.

Dataloader for CIFAR-N CIFAR-10N noise_label = torch.load('./data/CIFAR-10_human.pt') clean_label = noise_label['clean_label'] worst_label = noise_lab

<a href=[email protected]"> 117 Nov 30, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022