PyTorch wrappers for using your model in audacity!

Overview

audacitorch

This package contains utilities for prepping PyTorch audio models for use in Audacity. More specifically, it provides abstract classes for you to wrap your waveform-to-waveform and waveform-to-labels models (see the Deep Learning for Audacity website to learn more about deep learning models for audacity).

Table of Contents


img

Download Audacity with Deep Learning

Our work has not yet been merged to the main build of Audacity, though it will be soon. You can keep track of its progress by viewing our pull request. In the meantime, you can download an alpha version of Audacity + Deep Learning here.

Installing

You can install audacitorch using pip:

pip install -e "git+https://github.com/hugofloresgarcia/audacitorch.git#egg=audacitorch"

Contributing Models to Audacity

Supported Torch versions

audacitorch requires for your model to be able to run in Torch 1.9.0, as that's what the Audacity torchscript interpreter uses.

Deep Learning Effect and Analyzer

Audacity is equipped with a wrapper framework for deep learning models written in PyTorch. Audacity contains two deep learning tools: Deep Learning Effect and Deep Learning Analyzer.
Deep Learning Effect performs waveform to waveform processing, and is useful for audio-in-audio-out tasks (such as source separation, voice conversion, style transfer, amplifier emulation, etc.), while Deep Learning Analyzer performs waveform to labels processing, and is useful for annotation tasks (such as sound event detection, musical instrument recognition, automatic speech recognition, etc.). audacitorch contains two abstract classes for serializing two types of models: waveform-to-waveform and waveform-to-labels. The classes are WaveformToWaveformBase, and WaveformToLabelsBase, respectively.

Choosing an Effect Type

Waveform to Waveform models

As shown in the effect diagram, Waveform-to-waveform models receive a single multichannel audio track as input, and may write to a variable number of new audio tracks as output.

Example models for waveform-to-waveform effects include source separation, neural upsampling, guitar amplifier emulation, generative models, etc. Output tensors for waveform-to-waveform models must be multichannel waveform tensors with shape (num_output_channels, num_samples). For every audio waveform in the output tensor, a new audio track is created in the Audacity project.

Waveform to Labels models

As shown in the effect diagram, Waveform-to-labels models receive a single multichannel audio track as input, and may write to an output label track as output. The waveform-to-labels effect can be used for many audio analysis applications, such as voice activity detection, sound event detection, musical instrument recognition, automatic speech recognition, etc. The output for waveform-to-labels models must be a tuple of two tensors. The first tensor corresponds to the class indexes for each label present in the waveform, shape (num_timesteps,). The second tensor must contain timestamps with start and stop times for each label, shape (num_timesteps, 2).

What If My Model Uses a Spectrogram as Input/Output?

If your model uses a spectrogram as input/output, you'll need to wrap your forward pass with some torchscript-compatible preprocessing/postprocessing. We recommend using torchaudio, writing your own preprocessing transforms in their own nn.Module, or writing your PyTorch-only preprocessing and placing it in WaveformToWaveform.do_forward_pass or WaveformToLabels.do_forward_pass. See the compatibility section for more info.

Model Metadata

Certain details about the model, such as its sample rate, tool type (e.g. waveform-to-waveform or waveform-to-labels), list of labels, etc. must be provided by the model contributor in a separate metadata.json file. In order to help users choose the correct model for their required task, model contributors are asked to provide a short and long description of the model, the target domain of the model (e.g. speech, music, environmental, etc.), as well as a list of tags or keywords as part of the metadata. See here for an example metadata dictionary.

Metadata Spec

required fields:

  • sample_rate (int)
    • range (0, 396000)
    • Model sample rate. Input tracks will be resampled to this value.
  • domains (List[str])
    • List of data domains for the model. The list should contain any of the following strings (any others will be ignored): ["music", "speech", "environmental", "other"]
  • short_description(str)
    • max 60 chars
    • short description of the model. should contain a brief message with the model's purpose, e.g. "Use me for separating vocals from the background!".
  • long_description (str)
    • max 280 chars
    • long description of the model. Shown in the detailed view of the model UI.
  • tags (List[str])
    • list of tags (to be shown in the detailed view)
    • each tag should be 15 characters max
    • max 5 tags per model.
  • labels (List[str)
    • output labels for the model. Depending on the effect type, this field means different things
    • waveform-to-waveform
      • name of each output source (e.g. drums, bass, vocal). To create the track name for each output source, each one of the labels will be appended to the mixture track's name.
    • waveform-to-labels:
      • This should be classlist for model. The class indexes output by the model during a forward pass will be used to index into this classlist.
  • effect_type (str)
    • Target effect for this model. Must be one of ["waveform-to-waveform", "waveform-to-labels"].
  • multichannel (bool)
    • If multichannel is set to true, stereo tracks are passed to the model as multichannel audio tensors, with shape (2, n). Note that this means that the input could either be a mono track with shape (1, n) or stereo track with shape (2, n).
    • If multichannel is set to false, stereo tracks are downmixed, meaning that the input audio tensor will always be shape (1, n).

Making Your Model Built-In To Audacity

By default, users have to click on the Add From HuggingFace button on the Audacity Model Manager and enter the desired repo's ID to install a community contributed model. If you, instead, would like your community contributed model to show up in Audacity's Model Manager by default, please open a request here.

Example - Waveform-to-Waveform model

Here's a minimal example for a model that simply boosts volume by multiplying the incoming audio by a factor of 2.

We can sum up the whole process into 4 steps:

  1. Developing your model
  2. Wrapping your model using audacitorch
  3. Creating a metadata document
  4. Exporting to HuggingFace

Developing your model

First, we create our model. There are no internal constraints on what the internal model architecture should be, as long as you can use torch.jit.script or torch.jit.trace to serialize it, and it is able to meet the input-output constraints specified in waveform-to-waveform and waveform-to-labels models.

import torch
import torch.nn as nn

class MyVolumeModel(nn.Module):

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # do the neural net magic!
        x = x * 2

        return x

Making sure your model is compatible with torchscript

PyTorch makes it really easy to deploy your Python models in C++ by using torchscript, an intermediate representation format for torch models that can be called in C++. Many of Python's built-in functions are supported by torchscript. However, not all Python operations are supported by the torchscript environment, meaning that you are only allowed to use a subset of Python operations in your model code. See the torch.jit docs to learn more about writing torchscript-compatible code.

If your model computes spectrograms (or requires any kind of preprocessing/postprocessing), make sure those operations are compatible with torchscript, like torchaudio's operation set.

Useful links:

Wrapping your model using audacitorch

Now, we create a wrapper class for our model. Because our model returns an audio waveform as output, we'll use WaveformToWaveformBase as our parent class. For both WaveformToWaveformBase and WaveformToLabelsBase, we need to implement the do_forward_pass method with our processing code. See the docstrings for more details.

from audacitorch import WaveformToWaveformBase

class MyVolumeModelWrapper(WaveformToWaveformBase):
    
    def do_forward_pass(self, x: torch.Tensor) -> torch.Tensor:
        
        # do any preprocessing here! 
        # expect x to be a waveform tensor with shape (n_channels, n_samples)

        output = self.model(x)

        # do any postprocessing here!
        # the return value should be a multichannel waveform tensor with shape (n_channels, n_samples)
    
        return output

Creating a metadata document

Audacity models need a metadata file. See the metadata spec to learn about the required fields.

metadata = {
    'sample_rate': 48000, 
    'domain_tags': ['music', 'speech', 'environmental'],
    'short_description': 'Use me to boost volume by 3dB :).',
    'long_description':  'This description can be a max of 280 characters aaaaaaaaaaaaaaaaaaaa.',
    'tags': ['volume boost'],
    'labels': ['boosted'],
    'effect_type': 'waveform-to-waveform',
    'multichannel': False,
}

All set! We can now proceed to serialize the model to torchscript and save the model, along with its metadata.

from pathlib import Path
from audacitorch.utils import save_model, validate_metadata, \
                              get_example_inputs, test_run

# create a root dir for our model
root = Path('booster-net')
root.mkdir(exist_ok=True, parents=True)

# get our model
model = MyVolumeModel()

# wrap it
wrapper = MyVolumeModelWrapper(model)

# serialize it using torch.jit.script, torch.jit.trace,
# or a combination of both. 

# option 1: torch.jit.script 
# using torch.jit.script is preferred for most cases, 
# but may require changing a lot of source code
serialized_model = torch.jit.script(wrapper)

# option 2: torch.jit.trace
# using torch.jit.trace is typically easier, but you
# need to be extra careful that your serialized model behaves 
# properly after tracing
example_inputs = get_example_inputs()
serialized_model = torch.jit.trace(wrapper, example_inputs[0], 
                                    check_inputs=example_inputs)

# take your model for a test run!
test_run(serialized_model)

# check that we created our metadata correctly
success, msg = validate_metadata(metadata)
assert success

# save!
save_model(serialized_model, metadata, root)

Exporting to HuggingFace

You should now have a directory structure that looks like this:

/booster-net/
/booster-net/model.pt
/booster-net/metadata.json

This will be the repository for your audacity model. Make sure to add a readme with the audacity tag in the YAML metadata, so it show up on the explore tab of Audacity's Deep Learning Tools.

Create a README.md inside booster-net/, and add the following header:

in README.md

---
tags: audacity
---

Awesome! It's time to push to HuggingFace. See their documentation for adding a model to the HuggingFace model hub.

Debugging Your Model in Audacity

After serializing, you may need to debug your model inside Audacity, to make sure that it handles inputs correctly, doesn't crash while processing, and produces the correct output. While debugging, make sure your model isn't available through other users through the Explore HuggingFace button by temporarily removing the audacity tag from your README file. If your model fails internally while processing audio, you may see something like this:

To debug, you can access the error logs through the Help menu, in Help->Diagnostics->Show Log.... Any torchscript errors that may occur during the forward pass will be redirected here.

Example - Exporting a Pretrained Asteroid model

See this example notebook, where we serialize a pretrained ConvTasNet model for speech separation using the Asteroid source separation library.

Example - Exporting a Pretrained S2T model

See this example notebook, where we serialize a pretrained speech to text transformer from Facebook.


Owner
Hugo Flores García
PhD @interactiveaudiolab
Hugo Flores García
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022
YOLOv5 detection interface - PyQt5 implementation

所有代码已上传,直接clone后,运行yolo_win.py即可开启界面。 2021/9/29:加入置信度选择 界面是在ultralytics的yolov5基础上建立的,界面使用pyqt5实现,内容较简单,娱乐而已。 功能: 模型选择 本地文件选择(视频图片均可) 开关摄像头

487 Dec 27, 2022
Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Official PyTorch implementation of the preprint paper "Stylized Neural Painting", accepted to CVPR 2021.

Zhengxia Zou 1.5k Dec 28, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022
Code for "Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo"

Multi-View Multi-Person 3D Pose Estimation with Plane Sweep Stereo This repository includes the source code for our CVPR 2021 paper on multi-view mult

Jiahao Lin 66 Jan 04, 2023
Bayesian Meta-Learning Through Variational Gaussian Processes

vmgp This is the repository of Vivek Myers and Nikhil Sardana for our CS 330 final project, Bayesian Meta-Learning Through Variational Gaussian Proces

Vivek Myers 2 Nov 17, 2022
Code for the upcoming CVPR 2021 paper

The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth Jamie Watson, Oisin Mac Aodha, Victor Prisacariu, Gabriel J. Brostow and Michael

Niantic Labs 496 Dec 30, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices, ACM Multimedia 2021

Codes for ECBSR Edge-oriented Convolution Block for Real-time Super Resolution on Mobile Devices Xindong Zhang, Hui Zeng, Lei Zhang ACM Multimedia 202

xindong zhang 236 Dec 26, 2022
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022