Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Related tags

Deep LearningRealVSR
Overview

Dataset and Code for RealVSR

Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme
Xi Yang, Wangmeng Xiang, Hui Zeng and Lei Zhang
International Conference on Computer Vision, 2021.

Dataset

The dataset is hosted on Google Drive and Baidu Drive (code: 43ph). Some example scenes are shown below.

dataset_samples

The structure of the dataset is illustrated below.

File Description
GT.zip All ground truth sequences in RGB format
LQ.zip All low quality sequences in RGB format
GT_YCbCr.zip All ground truth sequences in YCbCr format
LQ_YCbCr.zip All low quality sequences in YCbCr format
GT_test.zip Ground truth test sequences in RGB format
LQ_test.zip Low Quality test sequences in RGB format
GT_YCbCr_test.zip Ground truth test sequences in YCbCr format
LQ_YCbCr_test.zip Low Quality test sequences in YCbCr format

Code

Dependencies

  • Linux (tested on Ubuntu 18.04)
  • Python 3 (tested on python 3.7)
  • NVIDIA GPU + CUDA (tested on CUDA 10.2 and 11.1)

Installation

# Create a new anaconda python environment (realvsr)
conda create -n realvsr python=3.7 -y

# Activate the created environment
conda activate realvsr

# Install dependencies
pip install -r requirements.txt

# Bulid the DCN module
cd codes/models/archs/dcn
python setup.py develop

Training

Modify the configuration files accordingly in codes/options/train folder and run the following command (current we did not implement distributed training):

python train.py -opt xxxxx.yml

Testing

Test on RealVSR testing set sequences:

Modify the configuration in test_RealVSR_wi_GT.py and run the following command:

python test_RealVSR_wi_GT.py

Test on real-world captured sequences:

Modify the configuration in test_RealVSR_wo_GT.py and run the following command:

python test_RealVSR_wo_GT.py

Pre-trained Models

Some pretrained models could be found on Google Drive and Baidu Drive (code: n1n0).

License

This project is released under the Apache 2.0 license.

Citation

If you find this code useful in your research, please consider citing:

@article{yang2021real,
  title={Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme},
  author={YANG, Xi and Xiang, Wangmeng and Zeng, Hui and Zhang, Lei},
  journal=ICCV,
  year={2021}
}

Acknowledgement

This implementation largely depends on EDVR. Thanks for the excellent codebase! You may also consider migrating it to BasicSR.

Owner
Xi Yang
PhD Candidate @ PolyU, working on low-level computer vision
Xi Yang
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
Code accompanying "Adaptive Methods for Aggregated Domain Generalization"

Adaptive Methods for Aggregated Domain Generalization (AdaClust) Official Pytorch Implementation of Adaptive Methods for Aggregated Domain Generalizat

Xavier Thomas 15 Sep 20, 2022
Simulator for FRC 2022 challenge: Rapid React

rrsim Simulator for FRC 2022 challenge: Rapid React out-1.mp4 Usage In order to run the simulator use the following: python3 rrsim.py [config_path] wh

1 Jan 18, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model Baris Gecer 1, Binod Bhattarai 1

Baris Gecer 190 Dec 29, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
This is a beginner-friendly repo to make a collection of some unique and awesome projects. Everyone in the community can benefit & get inspired by the amazing projects present over here.

Awesome-Projects-Collection Quality over Quantity :) What to do? Add some unique and amazing projects as per your favourite tech stack for the communi

Rohan Sharma 178 Jan 01, 2023
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
This is a demo app to be used in the video streaming applications

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks MoViDNN is an Android application that can be used to ev

ATHENA Christian Doppler (CD) Laboratory 7 Jul 21, 2022
Pytorch-diffusion - A basic PyTorch implementation of 'Denoising Diffusion Probabilistic Models'

PyTorch implementation of 'Denoising Diffusion Probabilistic Models' This reposi

Arthur Juliani 76 Jan 07, 2023
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Applying curriculum to meta-learning for few shot classification

Curriculum Meta-Learning for Few-shot Classification We propose an adaptation of the curriculum training framework, applicable to state-of-the-art met

Stergiadis Manos 3 Oct 25, 2022
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Python PID Tuner - Makes a model of the System from a Process Reaction Curve and calculates PID Gains

PythonPID_Tuner_SOPDT Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a r

1 Jan 18, 2022
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022