Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Related tags

Deep LearningRealVSR
Overview

Dataset and Code for RealVSR

Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme
Xi Yang, Wangmeng Xiang, Hui Zeng and Lei Zhang
International Conference on Computer Vision, 2021.

Dataset

The dataset is hosted on Google Drive and Baidu Drive (code: 43ph). Some example scenes are shown below.

dataset_samples

The structure of the dataset is illustrated below.

File Description
GT.zip All ground truth sequences in RGB format
LQ.zip All low quality sequences in RGB format
GT_YCbCr.zip All ground truth sequences in YCbCr format
LQ_YCbCr.zip All low quality sequences in YCbCr format
GT_test.zip Ground truth test sequences in RGB format
LQ_test.zip Low Quality test sequences in RGB format
GT_YCbCr_test.zip Ground truth test sequences in YCbCr format
LQ_YCbCr_test.zip Low Quality test sequences in YCbCr format

Code

Dependencies

  • Linux (tested on Ubuntu 18.04)
  • Python 3 (tested on python 3.7)
  • NVIDIA GPU + CUDA (tested on CUDA 10.2 and 11.1)

Installation

# Create a new anaconda python environment (realvsr)
conda create -n realvsr python=3.7 -y

# Activate the created environment
conda activate realvsr

# Install dependencies
pip install -r requirements.txt

# Bulid the DCN module
cd codes/models/archs/dcn
python setup.py develop

Training

Modify the configuration files accordingly in codes/options/train folder and run the following command (current we did not implement distributed training):

python train.py -opt xxxxx.yml

Testing

Test on RealVSR testing set sequences:

Modify the configuration in test_RealVSR_wi_GT.py and run the following command:

python test_RealVSR_wi_GT.py

Test on real-world captured sequences:

Modify the configuration in test_RealVSR_wo_GT.py and run the following command:

python test_RealVSR_wo_GT.py

Pre-trained Models

Some pretrained models could be found on Google Drive and Baidu Drive (code: n1n0).

License

This project is released under the Apache 2.0 license.

Citation

If you find this code useful in your research, please consider citing:

@article{yang2021real,
  title={Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme},
  author={YANG, Xi and Xiang, Wangmeng and Zeng, Hui and Zhang, Lei},
  journal=ICCV,
  year={2021}
}

Acknowledgement

This implementation largely depends on EDVR. Thanks for the excellent codebase! You may also consider migrating it to BasicSR.

Owner
Xi Yang
PhD Candidate @ PolyU, working on low-level computer vision
Xi Yang
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Official pytorch implementation of "Scaling-up Disentanglement for Image Translation", ICCV 2021.

Aviv Gabbay 41 Nov 29, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
PyTorch implementation of "VRT: A Video Restoration Transformer"

VRT: A Video Restoration Transformer Jingyun Liang, Jiezhang Cao, Yuchen Fan, Kai Zhang, Rakesh Ranjan, Yawei Li, Radu Timofte, Luc Van Gool Computer

Jingyun Liang 837 Jan 09, 2023
Code release for "Detecting Twenty-thousand Classes using Image-level Supervision".

Detecting Twenty-thousand Classes using Image-level Supervision Detic: A Detector with image classes that can use image-level labels to easily train d

Meta Research 1.3k Jan 04, 2023
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF)

Graph Convolutional Gated Recurrent Neural Network (GCGRNN) Improved from Graph Convolutional Neural Networks with Data-driven Graph Filter (GCNN-DDGF

Lei Lin 21 Dec 18, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Neural Nano-Optics for High-quality Thin Lens Imaging

Neural Nano-Optics for High-quality Thin Lens Imaging Project Page | Paper | Data Ethan Tseng, Shane Colburn, James Whitehead, Luocheng Huang, Seung-H

Ethan Tseng 39 Dec 05, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
Reference implementation for Structured Prediction with Deep Value Networks

Deep Value Network (DVN) This code is a python reference implementation of DVNs introduced in Deep Value Networks Learn to Evaluate and Iteratively Re

Michael Gygli 55 Feb 02, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
A curated list of neural network pruning resources.

A curated list of neural network pruning and related resources. Inspired by awesome-deep-vision, awesome-adversarial-machine-learning, awesome-deep-learning-papers and Awesome-NAS.

Yang He 1.7k Jan 09, 2023
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021