This is a demo app to be used in the video streaming applications

Related tags

Deep LearningMoViDNN
Overview

MoViDNN: A Mobile Platform for Evaluating Video Quality Enhancement with Deep Neural Networks

MoViDNN is an Android application that can be used to evaluate DNN based video quality enhancements for mobile devices. We provide the structure to evaluate both super-resolution, and denoising/deblocking DNNs in this application. However, the structure can be extended easily to adapt to additional approaches such as video frame interpolation.

Moreover, MoViDNN can also be used as a Subjective test environment to evaulate DNN based enhancements.

We use tensorflow-lite as the DNN framework and FFMPEG for the video processing.

We also provide a Python repository that can be used to convert existing Tensorflow/Keras models to tensorflow-lite versions for Android. Preparation

DNN Evaluation

MoViDNN can be used as a platform to evaluate the performance of video quality enhancement DNNs. It provides objective metrics (PSNR and SSIM) for the whole video along with measuring the execution performance of the device (execution time, executed frames per second).

DNN Configuration

This is the first screen of the DNN test and in this screen the DNN, the accelerator, and input videos are selected which then will be used during the DNN evaluation.

DNN Execution

Once the configuration is completed, DNN execution activity is run. It begins with extracting each frame from the input video using FFMpeg and saving them into a temporary folder. Afterward, the DNN is applied for each frame, and results are saved into another temporary folder. Once the DNN applied frames are ready, they are converted to a video using FFMpeg again. Finally, objective metric calculations are done with FFMpeg using the DNN applied video and the input video.

In this step, DNN applied video is saved into DNNResults/Videos/ folder, and CSV file containing objective metrics for each video is saved into DNNResults/Metrics/folder.

Adding New DNNs and Videos

MoVİDNN comes with 5 test videos, 2 SR models (ESPCN, EVSRNet), and one deblocking model (DnCNN). It is possible to add additional test videos and DNNs to MoViDNN.

To add a new DNN model, use the quantization script to prepare it for MoViDNN. Once it is done, you can put your model into /MoViDNN/Networks/folder on your mobile device's storage and it will be ready for evaluation. Similarly, if you want to add new test videos, you can simply move them into /MoViDNN/InputVideos/folder in your device storage.

MoViDNN
│
└───Networks
│   │   dncnn_x1.tflite
│   │   espcn_x2.tflite
│   │
│   │  <YourModel>.py
└───InputVideos
│   │   SoccerGame.mp4
│   │   Traffic.mp4
│   │
│   │  <YourVideo>.mp4
..

Subjective Evaluation

MoViDNN can also be used as a subjective test platform to evaluate the DNN applied videos. Once the DNN evaluation is done for a given network and the resulting video is saved, subjective test can be started.

In the first screen, instructions are shown to the tester. Once they are read carefully, the test can be started. Subjective test part of the MoViDNN displays all the selected videos in a random order. After each video, the tester is asked to rate the video quality from 1 to 5.

In the end, ratings are saved into a CSV file which can be used later.

Authors

  • Ekrem Çetinkaya - Christian Doppler Laboratory ATHENA, Alpen-Adria-Universitaet Klagenfurt - [email protected]
  • Minh Nguyen - Christian Doppler Laboratory ATHENA, Alpen-Adria-Universitaet Klagenfurt - [email protected]
Owner
ATHENA Christian Doppler (CD) Laboratory
Adaptive Streaming over HTTP and Emerging Networked Multimedia Services
ATHENA Christian Doppler (CD) Laboratory
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
A naive ROS interface for visualDet3D.

YOLO3D ROS Node This repo contains a Monocular 3D detection Ros node. Base on https://github.com/Owen-Liuyuxuan/visualDet3D All parameters are exposed

Yuxuan Liu 19 Oct 08, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
An example to implement a new backbone with OpenMMLab framework.

Backbone example on OpenMMLab framework English | 简体中文 Introduction This is an template repo about how to use OpenMMLab framework to develop a new bac

Ma Zerun 22 Dec 29, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
Python based Advanced AI Assistant

Knick is a virtual artificial intelligence project, fully developed in python. The objective of this project is to develop a virtual assistant that can handle our minor, intermediate as well as heavy

19 Nov 15, 2022
Applications using the GTN library and code to reproduce experiments in "Differentiable Weighted Finite-State Transducers"

gtn_applications An applications library using GTN. Current examples include: Offline handwriting recognition Automatic speech recognition Installing

Facebook Research 68 Dec 29, 2022
Multi-View Radar Semantic Segmentation

Multi-View Radar Semantic Segmentation Paper Multi-View Radar Semantic Segmentation, ICCV 2021. Arthur Ouaknine, Alasdair Newson, Patrick Pérez, Flore

valeo.ai 37 Oct 25, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Official implementation of the method ContIG, for self-supervised learning from medical imaging with genomics

ContIG: Self-supervised Multimodal Contrastive Learning for Medical Imaging with Genetics This is the code implementation of the paper "ContIG: Self-s

Digital Health & Machine Learning 22 Dec 13, 2022
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

Zhiqiang Shen 16 Nov 04, 2020
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022