Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Overview

Semi-supervised Adversarial Learning to Generate Photorealistic Face Images of New Identities from 3D Morphable Model

Baris Gecer 1, Binod Bhattarai 1, Josef Kittler 2, & Tae-Kyun Kim 1
1 Department of Electrical and Electronic Engineering, Imperial College London, UK
2 Centre for Vision, Speech and Signal Processing, University of Surrey, UK

This repository provides a Tensorflow implementation of our study where we propose a novel end-to-end semi-supervised adversarial framework to generate photorealistic face images of new identities with wide ranges of expressions, poses, and illuminations conditioned by a 3D morphable model.



(This documentation is still under construction, please refer to our paper for more details)

Approach

Our approach aims to synthesize photorealistic images conditioned by a given synthetic image by 3DMM. It regularizes cycle consistency by introducing an additional adversarial game between the two generator networks in an unsupervised fashion. Thus the under-constraint cycle loss is supervised to have correct matching between the two domains by the help of a limited number of paired data. We also encourage the generator to preserve face identity by a set-based supervision through a pretrained classification network.

Dependencies

Data

  • Generate synthetic images using any 3DMM model i.e. LSFM or Basel Face Model by running gen_syn_latent.m
  • Align and crop all datasets using MTCNN to 108x108

Usage

Train by the following script

$ python main.py    --log_dir [path2_logdir] --data_dir [path2_datadir] --syn_dataset [synthetic_dataset_name]
                    --dataset [real_dataset_name] --dataset_3dmm [300W-3D & AFLW2000_dirname] --input_scale_size 108

Add --load_path [paused_training_logdir] to continue a training

Generate realistic images after training by the following script

$ python main.py    --log_dir [path2_logdir] --data_dir [path2_datadir] --syn_dataset [synthetic_dataset_name]
                    --dataset [real_dataset_name] --dataset_3dmm [300W-3D & AFLW2000_dirname] --input_scale_size 108
                    --save_syn_dataset [saving_dir] --train_generator False --generate_dataset True --pretrained_gen [path2_logdir + /model.ckpt]

Pretrained Model

You can download the pretrained model

More Results


Citation

if you find this work is useful for your research, please cite our paper:

@inproceedings{gecer2018semi,
  title={Semi-supervised adversarial learning to generate photorealistic face images of new identities from 3D morphable model},
  author={Gecer, Baris and Bhattarai, Binod and Kittler, Josef and Kim, Tae-Kyun},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={217--234},
  year={2018}
}


Acknowledgement

This work was supported by the EPSRC Programme Grant ‘FACER2VM’ (EP/N007743/1). Baris Gecer is funded by the Turkish Ministry of National Education. This study is morally motivated to improve face recognition to help prediction of genetic disorders visible on human face in earlier stages.

Code borrows heavily from carpedm20's BEGAN implementation.

Owner
Baris Gecer
I am currently PhD. student at Imperial College, London and working on face recognition with generative adversarial learning
Baris Gecer
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Simple SN-GAN to generate CryptoPunks

CryptoPunks GAN Simple SN-GAN to generate CryptoPunks. Neural network architecture and training code has been modified from the PyTorch DCGAN example.

Teddy Koker 66 Dec 15, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目

定时面板上的签到盒 一个运行在 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 或 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 等定时面板的签到项目 𝐞𝐥𝐞𝐜𝐕𝟐𝐏 𝐪𝐢𝐧𝐠𝐥𝐨𝐧𝐠 特别声明 本仓库发布的脚本及其中涉及的任何解锁和解密分析脚本,仅用于测试和学习研究,禁止用于商业用途,不能保证其合

Leon 1.1k Dec 30, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
Official Pytorch implementation of "Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes", CVPR 2022

Learning to Estimate Robust 3D Human Mesh from In-the-Wild Crowded Scenes / 3DCrowdNet News 💪 3DCrowdNet achieves the state-of-the-art accuracy on 3D

Hongsuk Choi 113 Dec 21, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
PaRT: Parallel Learning for Robust and Transparent AI

PaRT: Parallel Learning for Robust and Transparent AI This repository contains the code for PaRT, an algorithm for training a base network on multiple

Mahsa 0 May 02, 2022
Voxel Transformer for 3D object detection

Voxel Transformer This is a reproduced repo of Voxel Transformer for 3D object detection. The code is mainly based on OpenPCDet. Introduction We provi

173 Dec 25, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Remote sensing change detection using PaddlePaddle

Change Detection Laboratory Developing and benchmarking deep learning-based remo

Lin Manhui 15 Sep 23, 2022