🍀 Pytorch implementation of various Attention Mechanisms, MLP, Re-parameter, Convolution, which is helpful to further understand papers.⭐⭐⭐

Overview

A Codebase For Attention, MLP, Re-parameter(ReP), Convolution

If this project is helpful to you, welcome to give a star.

Don't forget to follow me to learn about project updates.

Installation (Optional)

For the convenience use of this project, the pip installation method is provided. You can run the following command directly:

$ pip install dlutils_add

(However, it is highly recommended that you git clone this project, because pip install may not be updated in a timely manner. .whl file can also be downloaded by BaiDuYun (Access code: c56j).)


Contents


Attention Series


1. External Attention Usage

1.1. Paper

"Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks"

1.2. Overview

1.3. Code

from attention.ExternalAttention import ExternalAttention
import torch

input=torch.randn(50,49,512)
ea = ExternalAttention(d_model=512,S=8)
output=ea(input)
print(output.shape)

2. Self Attention Usage

2.1. Paper

"Attention Is All You Need"

1.2. Overview

1.3. Code

from attention.SelfAttention import ScaledDotProductAttention
import torch

input=torch.randn(50,49,512)
sa = ScaledDotProductAttention(d_model=512, d_k=512, d_v=512, h=8)
output=sa(input,input,input)
print(output.shape)

3. Simplified Self Attention Usage

3.1. Paper

None

3.2. Overview

3.3. Code

from attention.SimplifiedSelfAttention import SimplifiedScaledDotProductAttention
import torch

input=torch.randn(50,49,512)
ssa = SimplifiedScaledDotProductAttention(d_model=512, h=8)
output=ssa(input,input,input)
print(output.shape)

4. Squeeze-and-Excitation Attention Usage

4.1. Paper

"Squeeze-and-Excitation Networks"

4.2. Overview

4.3. Code

from attention.SEAttention import SEAttention
import torch

input=torch.randn(50,512,7,7)
se = SEAttention(channel=512,reduction=8)
output=se(input)
print(output.shape)

5. SK Attention Usage

5.1. Paper

"Selective Kernel Networks"

5.2. Overview

5.3. Code

from attention.SKAttention import SKAttention
import torch

input=torch.randn(50,512,7,7)
se = SKAttention(channel=512,reduction=8)
output=se(input)
print(output.shape)

6. CBAM Attention Usage

6.1. Paper

"CBAM: Convolutional Block Attention Module"

6.2. Overview

6.3. Code

from attention.CBAM import CBAMBlock
import torch

input=torch.randn(50,512,7,7)
kernel_size=input.shape[2]
cbam = CBAMBlock(channel=512,reduction=16,kernel_size=kernel_size)
output=cbam(input)
print(output.shape)

7. BAM Attention Usage

7.1. Paper

"BAM: Bottleneck Attention Module"

7.2. Overview

7.3. Code

from attention.BAM import BAMBlock
import torch

input=torch.randn(50,512,7,7)
bam = BAMBlock(channel=512,reduction=16,dia_val=2)
output=bam(input)
print(output.shape)

8. ECA Attention Usage

8.1. Paper

"ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks"

8.2. Overview

8.3. Code

from attention.ECAAttention import ECAAttention
import torch

input=torch.randn(50,512,7,7)
eca = ECAAttention(kernel_size=3)
output=eca(input)
print(output.shape)

9. DANet Attention Usage

9.1. Paper

"Dual Attention Network for Scene Segmentation"

9.2. Overview

9.3. Code

from attention.DANet import DAModule
import torch

input=torch.randn(50,512,7,7)
danet=DAModule(d_model=512,kernel_size=3,H=7,W=7)
print(danet(input).shape)

10. Pyramid Split Attention Usage

10.1. Paper

"EPSANet: An Efficient Pyramid Split Attention Block on Convolutional Neural Network"

10.2. Overview

10.3. Code

from attention.PSA import PSA
import torch

input=torch.randn(50,512,7,7)
psa = PSA(channel=512,reduction=8)
output=psa(input)
print(output.shape)

11. Efficient Multi-Head Self-Attention Usage

11.1. Paper

"ResT: An Efficient Transformer for Visual Recognition"

11.2. Overview

11.3. Code

from attention.EMSA import EMSA
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,64,512)
emsa = EMSA(d_model=512, d_k=512, d_v=512, h=8,H=8,W=8,ratio=2,apply_transform=True)
output=emsa(input,input,input)
print(output.shape)
    

12. Shuffle Attention Usage

12.1. Paper

"SA-NET: SHUFFLE ATTENTION FOR DEEP CONVOLUTIONAL NEURAL NETWORKS"

12.2. Overview

12.3. Code

from attention.ShuffleAttention import ShuffleAttention
import torch
from torch import nn
from torch.nn import functional as F


input=torch.randn(50,512,7,7)
se = ShuffleAttention(channel=512,G=8)
output=se(input)
print(output.shape)

    

13. MUSE Attention Usage

13.1. Paper

"MUSE: Parallel Multi-Scale Attention for Sequence to Sequence Learning"

13.2. Overview

13.3. Code

from attention.MUSEAttention import MUSEAttention
import torch
from torch import nn
from torch.nn import functional as F


input=torch.randn(50,49,512)
sa = MUSEAttention(d_model=512, d_k=512, d_v=512, h=8)
output=sa(input,input,input)
print(output.shape)

14. SGE Attention Usage

14.1. Paper

Spatial Group-wise Enhance: Improving Semantic Feature Learning in Convolutional Networks

14.2. Overview

14.3. Code

from attention.SGE import SpatialGroupEnhance
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
sge = SpatialGroupEnhance(groups=8)
output=sge(input)
print(output.shape)

15. A2 Attention Usage

15.1. Paper

A2-Nets: Double Attention Networks

15.2. Overview

15.3. Code

from attention.A2Atttention import DoubleAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
a2 = DoubleAttention(512,128,128,True)
output=a2(input)
print(output.shape)

16. AFT Attention Usage

16.1. Paper

An Attention Free Transformer

16.2. Overview

16.3. Code

from attention.AFT import AFT_FULL
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,49,512)
aft_full = AFT_FULL(d_model=512, n=49)
output=aft_full(input)
print(output.shape)

17. Outlook Attention Usage

17.1. Paper

VOLO: Vision Outlooker for Visual Recognition"

17.2. Overview

17.3. Code

from attention.OutlookAttention import OutlookAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,28,28,512)
outlook = OutlookAttention(dim=512)
output=outlook(input)
print(output.shape)

18. ViP Attention Usage

18.1. Paper

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition"

18.2. Overview

18.3. Code

from attention.ViP import WeightedPermuteMLP
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(64,8,8,512)
seg_dim=8
vip=WeightedPermuteMLP(512,seg_dim)
out=vip(input)
print(out.shape)

19. CoAtNet Attention Usage

19.1. Paper

CoAtNet: Marrying Convolution and Attention for All Data Sizes"

19.2. Overview

None

19.3. Code

from attention.CoAtNet import CoAtNet
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,3,224,224)
mbconv=CoAtNet(in_ch=3,image_size=224)
out=mbconv(input)
print(out.shape)

20. HaloNet Attention Usage

20.1. Paper

Scaling Local Self-Attention for Parameter Efficient Visual Backbones"

20.2. Overview

20.3. Code

from attention.HaloAttention import HaloAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,512,8,8)
halo = HaloAttention(dim=512,
    block_size=2,
    halo_size=1,)
output=halo(input)
print(output.shape)

21. Polarized Self-Attention Usage

21.1. Paper

Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

21.2. Overview

21.3. Code

from attention.PolarizedSelfAttention import ParallelPolarizedSelfAttention,SequentialPolarizedSelfAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,512,7,7)
psa = SequentialPolarizedSelfAttention(channel=512)
output=psa(input)
print(output.shape)

22. CoTAttention Usage

22.1. Paper

Contextual Transformer Networks for Visual Recognition---arXiv 2021.07.26

22.2. Overview

22.3. Code

from attention.CoTAttention import CoTAttention
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(50,512,7,7)
cot = CoTAttention(dim=512,kernel_size=3)
output=cot(input)
print(output.shape)


MLP Series

1. RepMLP Usage

1.1. Paper

"RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition"

1.2. Overview

1.3. Code

from mlp.repmlp import RepMLP
import torch
from torch import nn

N=4 #batch size
C=512 #input dim
O=1024 #output dim
H=14 #image height
W=14 #image width
h=7 #patch height
w=7 #patch width
fc1_fc2_reduction=1 #reduction ratio
fc3_groups=8 # groups
repconv_kernels=[1,3,5,7] #kernel list
repmlp=RepMLP(C,O,H,W,h,w,fc1_fc2_reduction,fc3_groups,repconv_kernels=repconv_kernels)
x=torch.randn(N,C,H,W)
repmlp.eval()
for module in repmlp.modules():
    if isinstance(module, nn.BatchNorm2d) or isinstance(module, nn.BatchNorm1d):
        nn.init.uniform_(module.running_mean, 0, 0.1)
        nn.init.uniform_(module.running_var, 0, 0.1)
        nn.init.uniform_(module.weight, 0, 0.1)
        nn.init.uniform_(module.bias, 0, 0.1)

#training result
out=repmlp(x)
#inference result
repmlp.switch_to_deploy()
deployout = repmlp(x)

print(((deployout-out)**2).sum())

2. MLP-Mixer Usage

2.1. Paper

"MLP-Mixer: An all-MLP Architecture for Vision"

2.2. Overview

2.3. Code

from mlp.mlp_mixer import MlpMixer
import torch
mlp_mixer=MlpMixer(num_classes=1000,num_blocks=10,patch_size=10,tokens_hidden_dim=32,channels_hidden_dim=1024,tokens_mlp_dim=16,channels_mlp_dim=1024)
input=torch.randn(50,3,40,40)
output=mlp_mixer(input)
print(output.shape)

3. ResMLP Usage

3.1. Paper

"ResMLP: Feedforward networks for image classification with data-efficient training"

3.2. Overview

3.3. Code

from mlp.resmlp import ResMLP
import torch

input=torch.randn(50,3,14,14)
resmlp=ResMLP(dim=128,image_size=14,patch_size=7,class_num=1000)
out=resmlp(input)
print(out.shape) #the last dimention is class_num

4. gMLP Usage

4.1. Paper

"Pay Attention to MLPs"

4.2. Overview

4.3. Code

from mlp.g_mlp import gMLP
import torch

num_tokens=10000
bs=50
len_sen=49
num_layers=6
input=torch.randint(num_tokens,(bs,len_sen)) #bs,len_sen
gmlp = gMLP(num_tokens=num_tokens,len_sen=len_sen,dim=512,d_ff=1024)
output=gmlp(input)
print(output.shape)

Re-Parameter Series


1. RepVGG Usage

1.1. Paper

"RepVGG: Making VGG-style ConvNets Great Again"

1.2. Overview

1.3. Code

from rep.repvgg import RepBlock
import torch


input=torch.randn(50,512,49,49)
repblock=RepBlock(512,512)
repblock.eval()
out=repblock(input)
repblock._switch_to_deploy()
out2=repblock(input)
print('difference between vgg and repvgg')
print(((out2-out)**2).sum())

2. ACNet Usage

2.1. Paper

"ACNet: Strengthening the Kernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks"

2.2. Overview

2.3. Code

from rep.acnet import ACNet
import torch
from torch import nn

input=torch.randn(50,512,49,49)
acnet=ACNet(512,512)
acnet.eval()
out=acnet(input)
acnet._switch_to_deploy()
out2=acnet(input)
print('difference:')
print(((out2-out)**2).sum())

2. Diverse Branch Block Usage

2.1. Paper

"Diverse Branch Block: Building a Convolution as an Inception-like Unit"

2.2. Overview

2.3. Code

2.3.1 Transform I
from rep.ddb import transI_conv_bn
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)
#conv+bn
conv1=nn.Conv2d(64,64,3,padding=1)
bn1=nn.BatchNorm2d(64)
bn1.eval()
out1=bn1(conv1(input))

#conv_fuse
conv_fuse=nn.Conv2d(64,64,3,padding=1)
conv_fuse.weight.data,conv_fuse.bias.data=transI_conv_bn(conv1,bn1)
out2=conv_fuse(input)

print("difference:",((out2-out1)**2).sum().item())
2.3.2 Transform II
from rep.ddb import transII_conv_branch
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)

#conv+conv
conv1=nn.Conv2d(64,64,3,padding=1)
conv2=nn.Conv2d(64,64,3,padding=1)
out1=conv1(input)+conv2(input)

#conv_fuse
conv_fuse=nn.Conv2d(64,64,3,padding=1)
conv_fuse.weight.data,conv_fuse.bias.data=transII_conv_branch(conv1,conv2)
out2=conv_fuse(input)

print("difference:",((out2-out1)**2).sum().item())
2.3.3 Transform III
from rep.ddb import transIII_conv_sequential
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)

#conv+conv
conv1=nn.Conv2d(64,64,1,padding=0,bias=False)
conv2=nn.Conv2d(64,64,3,padding=1,bias=False)
out1=conv2(conv1(input))


#conv_fuse
conv_fuse=nn.Conv2d(64,64,3,padding=1,bias=False)
conv_fuse.weight.data=transIII_conv_sequential(conv1,conv2)
out2=conv_fuse(input)

print("difference:",((out2-out1)**2).sum().item())
2.3.4 Transform IV
from rep.ddb import transIV_conv_concat
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)

#conv+conv
conv1=nn.Conv2d(64,32,3,padding=1)
conv2=nn.Conv2d(64,32,3,padding=1)
out1=torch.cat([conv1(input),conv2(input)],dim=1)

#conv_fuse
conv_fuse=nn.Conv2d(64,64,3,padding=1)
conv_fuse.weight.data,conv_fuse.bias.data=transIV_conv_concat(conv1,conv2)
out2=conv_fuse(input)

print("difference:",((out2-out1)**2).sum().item())
2.3.5 Transform V
from rep.ddb import transV_avg
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)

avg=nn.AvgPool2d(kernel_size=3,stride=1)
out1=avg(input)

conv=transV_avg(64,3)
out2=conv(input)

print("difference:",((out2-out1)**2).sum().item())
2.3.6 Transform VI
from rep.ddb import transVI_conv_scale
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,64,7,7)

#conv+conv
conv1x1=nn.Conv2d(64,64,1)
conv1x3=nn.Conv2d(64,64,(1,3),padding=(0,1))
conv3x1=nn.Conv2d(64,64,(3,1),padding=(1,0))
out1=conv1x1(input)+conv1x3(input)+conv3x1(input)

#conv_fuse
conv_fuse=nn.Conv2d(64,64,3,padding=1)
conv_fuse.weight.data,conv_fuse.bias.data=transVI_conv_scale(conv1x1,conv1x3,conv3x1)
out2=conv_fuse(input)

print("difference:",((out2-out1)**2).sum().item())

Convolution Series


1. Depthwise Separable Convolution Usage

1.1. Paper

"MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications"

1.2. Overview

1.3. Code

from conv.DepthwiseSeparableConvolution import DepthwiseSeparableConvolution
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,3,224,224)
dsconv=DepthwiseSeparableConvolution(3,64)
out=dsconv(input)
print(out.shape)

2. MBConv Usage

2.1. Paper

"Efficientnet: Rethinking model scaling for convolutional neural networks"

2.2. Overview

2.3. Code

from conv.MBConv import MBConvBlock
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,3,224,224)
mbconv=MBConvBlock(ksize=3,input_filters=3,output_filters=512,image_size=224)
out=mbconv(input)
print(out.shape)

3. Involution Usage

3.1. Paper

"Involution: Inverting the Inherence of Convolution for Visual Recognition"

3.2. Overview

3.3. Code

from conv.Involution import Involution
import torch
from torch import nn
from torch.nn import functional as F

input=torch.randn(1,4,64,64)
involution=Involution(kernel_size=3,in_channel=4,stride=2)
out=involution(input)
print(out.shape)

Owner
xmu-xiaoma66
A graduate student in MAC Lab of XMU
xmu-xiaoma66
PPO Lagrangian in JAX

PPO Lagrangian in JAX This repository implements PPO in JAX. Implementation is tested on the safety-gym benchmark. Usage Install dependencies using th

Karush Suri 2 Sep 14, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
LIAO Shuiying 6 Dec 01, 2022
PyTorch implementation of the paper Deep Networks from the Principle of Rate Reduction

Deep Networks from the Principle of Rate Reduction This repository is the official PyTorch implementation of the paper Deep Networks from the Principl

459 Dec 27, 2022
Time-Optimal Planning for Quadrotor Waypoint Flight

Time-Optimal Planning for Quadrotor Waypoint Flight This is an example implementation of the paper "Time-Optimal Planning for Quadrotor Waypoint Fligh

Robotics and Perception Group 38 Dec 02, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022
[SIGGRAPH Asia 2021] DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning.

DeepVecFont This is the homepage for "DeepVecFont: Synthesizing High-quality Vector Fonts via Dual-modality Learning". Yizhi Wang and Zhouhui Lian. WI

Yizhi Wang 17 Dec 22, 2022
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Learned model to estimate number of distinct values (NDV) of a population using a small sample.

Learned NDV estimator Learned model to estimate number of distinct values (NDV) of a population using a small sample. The model approximates the maxim

2 Nov 21, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to

4.2k Jan 01, 2023
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023
Official implementation for ICDAR 2021 paper "Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer"

Handwritten Mathematical Expression Recognition with Bidirectionally Trained Transformer Description Convert offline handwritten mathematical expressi

Wenqi Zhao 87 Dec 27, 2022
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023