This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

Overview

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation

This repo is the official implementation of "DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation". [Paper] [Project]

Update

  • Clean version is released! It currently includes code, data, log and models for the following tasks:
  • 2D human pose estimation
  • 3D human pose estimation
  • Body recovery via a SMPL model

TODO

  • Provide different sample interval checkpoints/logs
  • Add DeciWatch in MMHuman3D

Description

This paper proposes a simple baseline framework for video-based 2D/3D human pose estimation that can achieve 10 times efficiency improvement over existing works without any performance degradation, named DeciWatch. Unlike current solutions that estimate each frame in a video, DeciWatch introduces a simple yet effective sample-denoise-recover framework that only watches sparsely sampled frames, taking advantage of the continuity of human motions and the lightweight pose representation. Specifically, DeciWatch uniformly samples less than 10% video frames for detailed estimation, denoises the estimated 2D/3D poses with an efficient Transformer architecture, and then accurately recovers the rest of the frames using another Transformer-based network. Comprehensive experimental results on three video-based human pose estimation, body mesh recovery tasks and efficient labeling in videos with four datasets validate the efficiency and effectiveness of DeciWatch.

Getting Started

Environment Requirement

DeciWatch has been implemented and tested on Pytorch 1.10.1 with python >= 3.6. It supports both GPU and CPU inference.

Clone the repo:

git clone https://github.com/cure-lab/DeciWatch.git

We recommend you install the requirements using conda:

# conda
source scripts/install_conda.sh

Prepare Data

All the data used in our experiment can be downloaded here.

Google Drive

Baidu Netdisk

Valid data includes:

Dataset Pose Estimator 3D Pose 2D Pose SMPL
Sub-JHMDB SimplePose
3DPW EFT
3DPW PARE
3DPW SPIN
Human3.6M FCN
AIST++ SPIN

Please refer to doc/data.md for detailed data information and data preparing.

Training

Run the commands below to start training:

python train.py --cfg [config file] --dataset_name [dataset name] --estimator [backbone estimator you use] --body_representation [smpl/3D/2D] --sample_interval [sample interval N]

For example, you can train on 3D representation of 3DPW using backbone estimator SPIN with sample interval 10 by:

python train.py --cfg configs/config_pw3d_spin.yaml --dataset_name pw3d --estimator spin --body_representation 3D --sample_interval 10

Note that the training and testing datasets should be downloaded and prepared before training.

You may refer to doc/training.md for more training details.

Evaluation

Results on 2D Pose

Dataset Estimator PCK 0.05 (INPUT/OUTPUT) PCK 0.1 (INPUT/OUTPUT) PCK 0.2 (INPUT/OUTPUT) Download
Sub-JHMDB simplepose 57.30%/79.32% 81.61%/94.27% 93.94%/98.85% Baidu Netdisk / Google Drive

Results on 3D Pose

Dataset Estimator MPJPE (INPUT/OUTPUT) Accel (INPUT/OUTPUT) Download
3DPW SPIN 96.92/93.34 34.68/7.06 Baidu Netdisk / Google Drive
3DPW EFT 90.34/89.02 32.83/6.84 Baidu Netdisk / Google Drive
3DPW PARE 78.98/77.16 25.75/6.90 Baidu Netdisk / Google Drive
AIST++ SPIN 107.26/71.27 33.37/5.68 Baidu Netdisk / Google Drive
Human3.6M FCN 54.56/52.83 19.18/1.47 Baidu Netdisk / Google Drive

Results on SMPL

Dataset Estimator MPJPE (INPUT/OUTPUT) Accel (INPUT/OUTPUT) MPVPE (INPUT/OUTPUT) Download
3DPW SPIN 100.13/97.53 35.53/8.38 114.39/112.84 Baidu Netdisk / Google Drive
3DPW EFT 91.60/92.56 33.57/8.7 5 110.34/109.27 Baidu Netdisk / Google Drive
3DPW PARE 80.44/81.76 26.77/7.24 94.88/95.68 Baidu Netdisk / Google Drive
AIST++ SPIN 108.25/82.10 33.83/7.27 137.51/106.08 Baidu Netdisk / Google Drive

Noted that although our main contribution is the efficiency improvement, using DeciWatch as post processing is also helpful for accuracy and smoothness improvement.

You may refer to doc/evaluate.md for evaluate details.

Quick Demo

Run the commands below to visualize demo:

python demo.py --cfg [config file] --dataset_name [dataset name] --estimator [backbone estimator you use] --body_representation [smpl/3D/2D] --sample_interval [sample interval N]

You are supposed to put corresponding images with the data structure:

|-- data
    |-- videos
        |-- pw3d 
            |-- downtown_enterShop_00
                |-- image_00000.jpg
                |-- ...
            |-- ...
        |-- jhmdb
            |-- catch
            |-- ...
        |-- aist
            |-- gWA_sFM_c01_d27_mWA2_ch21.mp4
            |-- ...
        |-- ...

For example, you can train on 3D representation of 3DPW using backbone estimator SPIN with sample interval 10 by:

python demo.py --cfg configs/config_pw3d_spin.yaml --dataset_name pw3d --estimator spin --body_representation 3D --sample_interval 10

Please refer to the dataset website for the raw images. You may change the config in lib/core/config.py for different visualization parameters.

You may refer to doc/visualize.md for visualization details.

Citing DeciWatch

If you find this repository useful for your work, please consider citing it as follows:

@article{zeng2022deciwatch,
  title={DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation},
  author={Zeng, Ailing and Ju, Xuan and Yang, Lei and Gao, Ruiyuan and Zhu, Xizhou and Dai, Bo and Xu, Qiang},
  journal={arXiv preprint arXiv:2203.08713},
  year={2022}
}

Please remember to cite all the datasets and backbone estimators if you use them in your experiments.

Acknowledgement

Many thanks to Xuan Ju for her great efforts to clean almost the original code!!!

License

This code is available for non-commercial scientific research purposes as defined in the LICENSE file. By downloading and using this code you agree to the terms in the LICENSE. Third-party datasets and software are subject to their respective licenses.

Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
Official repository for "On Generating Transferable Targeted Perturbations" (ICCV 2021)

On Generating Transferable Targeted Perturbations (ICCV'21) Muzammal Naseer, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Fatih Porikli Paper:

Muzammal Naseer 46 Nov 17, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
Event-forecasting - Event Forecasting Algorithms With Python

event-forecasting Event Forecasting Algorithms Theory Correlating events in comp

Intellia ICT 4 Feb 15, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Diffusion Normalizing Flow (DiffFlow) Neurips2021

Diffusion Normalizing Flow (DiffFlow) Reproduce setup environment The repo heavily depends on jam, a personal toolbox developed by Qsh.zh. The API may

76 Jan 01, 2023
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021