A variational Bayesian method for similarity learning in non-rigid image registration (CVPR 2022)

Related tags

Deep Learninglearnsim
Overview

A variational Bayesian method for similarity learning in non-rigid image registration

We provide the source code and the trained models used in the research presented at CVPR 2022. The model learns in an unsupervised way a data-specific similarity metric for atlas-based non-rigid image registration. The use of a learnt similarity metric parametrised as a neural network yields more accurate results than use of traditional similarity metrics, without a negative impact on the transformation smoothness or image registration speed.

Model

model

Neural network parametrising the similarity metric initialised to SSD. The model consists of a 3D U-Net encoder, which is initialised to the Dirac delta function and followed by a 1D convolutional layer. Feature maps output by the 3D U-Net are used to calculate a weighted sum returned by the aggregation layer. Before training, the output of the neural network approximates the value of SSD. We would like to thank Rhea Jiang from the Harvard Graduate School of Design for the figure.

Results

boxplot

Average surface distances and Dice scores calculated on subcortical structure segmentations when aligning images in the test split using the baseline and learnt similarity metrics. The learnt models show clear improvement over the baselines. We provide details on the statistical significance of the improvement in the paper.

Usage

Set-up

The experiments were run on a system with Ubuntu 20.04.4 and Python 3.8.6. To install the necessary Python libraries run the following command:

pip install requirements.txt

Training

Examples of json files with the model parameters can be found in the folder /configs. Use the following command to train a similarity metric:

CUDA_VISIBLE_DEVICES=<device_ids> python -m torch.distributed.launch --nproc_per_node=<no_gpus> train.py -c <path/to/config.json>

Testing

Use the following command to align images:

CUDA_VISIBLE_DEVICES=<device_id> python -m torch.distributed.launch --nproc_per_node=1 test.py -c <path/to/config.json> -r <path/to/checkpoint.pt>

Pre-trained models

For training and testing, we used brain MRI scans from the UK Biobank. Click on the links below to download the pre-trained models.

Model Baseline Learnt
SSD N/A 12 MB
LCC N/A 22 MB
VXM + SSD 1 MB 1 MB
VXM + LCC 1 MB 1 MB

Citation

If you use this code, please cite our paper.

Daniel Grzech, Mohammad Farid Azampour, Ben Glocker, Julia Schnabel, Nassir Navab, Bernhard Kainz, and Loïc Le Folgoc. A variational Bayesian method for similarity learning in non-rigid image registration. CVPR 2022.

@inproceedings{Grzech2022,
    author = {Grzech, Daniel and Azampour, Mohammad Farid and Glocker, Ben and Schnabel, Julia and Navab, Nassir and Kainz, Bernhard and {Le Folgoc}, Lo{\"{i}}c},
    title = {{A variational Bayesian method for similarity learning in non-rigid image registration}},
    booktitle = {CVPR},
    year = {2022}
}
Owner
daniel grzech
🌊🌊🌊
daniel grzech
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs

Perceiver IO Unofficial implementation of Perceiver IO: A General Architecture for Structured Inputs & Outputs Usage import torch from src.perceiver.

Timur Ganiev 111 Nov 15, 2022
Hunt down social media accounts by username across social networks

Hunt down social media accounts by username across social networks Installation | Usage | Docker Notes | Contributing Installation # clone the repo $

1 Dec 14, 2021
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

SelfGNN A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in Th

Zekarias Tilahun 24 Jun 21, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Resolution (CVPR2021)

MASA-SR Official PyTorch implementation of our CVPR2021 paper MASA-SR: Matching Acceleration and Spatial Adaptation for Reference-Based Image Super-Re

DV Lab 126 Dec 20, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Code & Models for Temporal Segment Networks (TSN) in ECCV 2016

Temporal Segment Networks (TSN) We have released MMAction, a full-fledged action understanding toolbox based on PyTorch. It includes implementation fo

1.4k Jan 01, 2023
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023