Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

Overview

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation

Source code for the paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".
Paper accepted at British Machine Vision Conference (BMVC), 2021

Overview

We present a simple framework to improve performance of regression based knowledge distillation from self-supervised teacher networks. The teacher is trained using a standard self-supervised learning (SSL) technique. The student network is then trained to directly regress the teacher features (using MSE loss on normalized features). Importantly, the student architecture contains an additional multi-layer perceptron (MLP) head atop the CNN backbone during the distillation (training) stage. A deeper architecture provides the student higher capacity to predict the teacher representations. This additional MLP head can be removed during inference without hurting downstream performance. This is especially surprising since only the output of the MLP is trained to mimic the teacher and the backbone CNN features have a high MSE loss with the teacher features. This observation allows us to obtain better student models by using deeper models during distillation without altering the inference architecture. The train and test stage architectures are shown in the figure below.

Requirements

All our experiments use the PyTorch library. We recommend installing the following package versions:

  • python=3.7.6
  • pytorch=1.4
  • torchvision=0.5.0
  • faiss-gpu=1.6.1 (required for k-NN evaluation alone)

Instructions for PyTorch installation can be found here. GPU version of the FAISS package is necessary for k-NN evaluation of trained models. It can be installed using the following command:

pip install faiss-gpu

Dataset

We use the ImageNet-1k dataset in our experiments. Download and prepare the dataset using the PyTorch ImageNet training example code. The dataset path needs to be set in the bash scripts used for training and evaluation.

Training

Distillation can be performed by running the following command:

bash run.sh

Training with ResNet-50 teacher and ResNet-18 student requires nearly 2.5 days on 4 2080ti GPUs (~26m/epoch). The defualt hyperparameters values are set to ones used in the paper. Modify the teacher and student architectures as necessary. Set the approapriate paths for the ImageNet dataset root and the experiment root. The current code will generate a directory named exp_dir containing checkpoints and logs sub-directories.

Evaluation

Set the experiment name and checkpoint epoch in the evaluation bash scripts. The trained checkpoints are assumed to be stored as exp_dir/checkpoints/ckpt_epoch_<num>.pth. Edit the weights argument to load model parameters from a custom checkpoint.

k-NN Evaluation

k-NN evaluation requires FAISS-GPU package installation. We evaluate the performance of the CNN backbone features. Run k-NN evaluation using:

bash knn_eval.sh

The image features and results for k-NN (k=1 and 20) evaluation are stored in exp_dir/features/ path.

Linear Evaluation

Here, we train a single linear layer atop the CNN backbone using an SGD optimizer for 40 epochs. The evaluation can be performed using the following code:

bash lin_eval.sh

The evaluation results are stored in exp_dir/linear/ path. Set the use_cache argument in the bash script to use cached features for evaluation. Using this argument will result in a single round of feature calculation for caching and 40 epochs of linear layer training using the cached features. While it usually results in slightly reduced performance, it can be used for faster evaluation of intermediate checkpoints.

Pretrained Models

To evaluate the pretrained models, create an experiment root directory exp_dir and place the checkpoint in exp_dir/checkpoints/. Set the exp argument in the evaluation bash scripts to perform k-NN and linear evaluation. We provide the pretrained teacher (obtained using the officially shared checkpoints for the corresponding SSL teacher) and our distilled student model weights. We use cached features of the teacher in some of our experiments for faster training.

Teacher Student 1-NN Linear
MoCo-v2 ResNet-50 MobileNet-v2 55.5 69.1
MoCo-v2 ResNet-50 ResNet-18 54.8 65.1
SimCLR ResNet-50x4 ResNet-50 (cached) 60.3 74.2
BYOL ResNet-50 ResNet-18 (cached) 56.7 66.8
SwAV ResNet-50 (cached) ResNet-18 54.0 65.8

TODO

  • Add code for transfer learning evaluation
  • Reformat evaluation codes
  • Add code to evaluate models at different stages of CNN backbone and MLP head

Citation

If you make use of the code, please cite the following work:

@inproceedings{navaneet2021simreg,
 author = {Navaneet, K L and Koohpayegani, Soroush Abbasi and Tejankar, Ajinkya and Pirsiavash, Hamed},
 booktitle = {British Machine Vision Conference (BMVC)},
 title = {SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation},
 year = {2021}
}

License

This project is under the MIT license.

IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Intermediate Domain Module (IDM) This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-I

Yongxing Dai 87 Nov 22, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Impression-Learning-Camera-Ready Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic

2 Feb 09, 2022
Dynamic Environments with Deformable Objects (DEDO)

DEDO - Dynamic Environments with Deformable Objects DEDO is a lightweight and customizable suite of environments with deformable objects. It is aimed

Rika 32 Dec 22, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
"Domain Adaptive Semantic Segmentation without Source Data" (ACM MM 2021)

LDBE Pytorch implementation for two papers (the paper will be released soon): "Domain Adaptive Semantic Segmentation without Source Data", ACM MM2021.

benfour 16 Sep 28, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network

TransferNet: Learning Transferrable Knowledge for Semantic Segmentation with Deep Convolutional Neural Network Created by Seunghoon Hong, Junhyuk Oh,

42 Jun 29, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
A Partition Filter Network for Joint Entity and Relation Extraction EMNLP 2021

EMNLP 2021 - A Partition Filter Network for Joint Entity and Relation Extraction

zhy 127 Jan 04, 2023
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales

IRON Kaggle project done while doing IRONHACK Bootcamp where we had to analyze and use a Machine Learning Project to predict future sales. In this case, we ended up using XGBoost because it was the o

1 Jan 04, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022