Hard cater examples from Hopper ICLR paper

Related tags

Deep Learningcater-h
Overview

CATER-h NEC Laboratories America, Inc.

Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf

(*Contact: [email protected])

CATER-h is the dataset proposed for the Video Reasoning task, specifically, the problem of Object Permanence, investigated in Hopper: Multi-hop Transformer for Spatiotemporal Reasoning accepted to ICLR 2021. Please refer to our full paper for detailed analysis and evaluations.

1. Overview

This repository provides the CATER-h dataset used in the paper "Hopper: Multi-hop Transformer for Spatiotemporal Reasoning", as well as instructions/code to create the CATER-h dataset.

If you find the dataset or the code helpful, please cite:

Honglu Zhou, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf. Hopper: Multi-hop Transformer for Spatiotemporal Reasoning. In International Conference on Learning Representations (ICLR), 2021.

@inproceedings{zhou2021caterh,
    title = {{Hopper: Multi-hop Transformer for Spatiotemporal Reasoning}},
    author = {Zhou, Honglu and Kadav, Asim and Lai, Farley and Niculescu-Mizil, Alexandru and Min, Martin Renqiang and Kapadia, Mubbasir and Graf, Hans Peter},
    booktitle = {ICLR},
    year = 2021
}  

2. Dataset

A pre-generated sample of the dataset used in the paper is provided here. If you'd like to generate a version of the dataset, please follow instructions in the following.

3. Requirements

  1. All CLEVR requirements (eg, Blender: the code was used with v2.79b).
  2. This code was used on Linux machines.
  3. GPU: This code was tested with multiple types of GPUs and should be compatible with most GPUs. By default it will use all the GPUs on the machine.
  4. All DETR requirements. You can check the site-packages of our conda environment (Python3.7.6) used.

4. Generating CATER-h

4.1 Generating videos and labels

(We modify code provided by CATER.)

  1. cd generate/

  2. echo $PWD >> blender-2.79b-linux-glibc219-x86_64/2.79/python/lib/python3.5/site-packages/clevr.pth (You can download our blender-2.79b-linux-glibc219-x86_64.)

  3. Run time python launch.py to start generating. Please read through the script to change any settings, paths etc. The command line options should also be easy to follow from the script (e.g., --num_images specifies the number of videos to generate).

  4. time python gen_train_test.py to generate labels for the dataset for each of the tasks. Change the parameters on the top of the file, and run it.

4.2 Obtaining frame and object features

You can find our extracted frame and object features here. The CNN backbone we utilized to obtain the frame features is a pre-trained ResNeXt-101 model. We use DETR trained on the LA-CATER dataset to obtain object features.

4.3 Filtering data by the frame index of the last visible snitch

  1. cd extract/

  2. Download our pretrained object detector from here. Create a folder checkpoints. Put the pretrained object detector into the folder checkpoints.

  3. Change paths etc in extract/configs/CATER-h.yml

  4. time ./run.sh

This will generate an output folder with pickle files that save the frame index of the last visible snitch and the detector's confidence.

  1. Run resample.ipynb which will resample the data to have balanced train/val set in terms of the class label and the frame index of the last visible snitch.

Acknowledgments

The code in this repository is heavily based on the following publically available implementations:

Owner
NECLA ML Group
NEC Labs America, Machine Learning Group
NECLA ML Group
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
Codebase for "Revisiting spatio-temporal layouts for compositional action recognition" (Oral at BMVC 2021).

Revisiting spatio-temporal layouts for compositional action recognition Codebase for "Revisiting spatio-temporal layouts for compositional action reco

Gorjan 20 Dec 15, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Our CIKM21 Paper "Incorporating Query Reformulating Behavior into Web Search Evaluation"

Reformulation-Aware-Metrics Introduction This codebase contains source-code of the Python-based implementation of our CIKM 2021 paper. Chen, Jia, et a

xuanyuan14 5 Mar 05, 2022
PyKaldi GOP-DNN on Epa-DB

PyKaldi GOP-DNN on Epa-DB This repository has the tools to run a PyKaldi GOP-DNN algorithm on Epa-DB, a database of non-native English speech by Spani

18 Dec 14, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
Drslmarkov - Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

Distributionally Robust Structure Learning for Discrete Pairwise Markov Networks

1 Nov 24, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Semi Supervised Learning for Medical Image Segmentation, a collection of literature reviews and code implementations.

Semi-supervised-learning-for-medical-image-segmentation. Recently, semi-supervised image segmentation has become a hot topic in medical image computin

Healthcare Intelligence Laboratory 1.3k Jan 03, 2023
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022