Repository for the AugmentedPCA Python package.

Overview

AugmentedPCA logo

Overview

This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that find a set of factors aligned with an augmenting objective in addition to the canonical PCA objective of finding factors that represent the data variance. AugmentedPCA can be split into two general families of models: adversarial AugmentedPCA and supervised AugmentedPCA.

Supervised AugmentedPCA

In supervised AugmentedPCA (SAPCA), the augmenting objective is to make the factors aligned with the data labels, or some outcome, in addition to having the factors explain the variance of the original observed or primary data. SAPCA is useful when predictivity of latent components with respects to a set of data labels or outcomes is desired. SAPCA is equivalent to a supervised autoencoder (SAE) with a single hidden layer. Therefore, SAPCA can be applied to situations where the properties of latent representations enforced via deep SAEs are desired, yet where limited data or training inconsistencies are a concern. Below is a diagram depicting the relationship between primary data, supervision data, and the resulting SAPCA factors.

SAPCA diagram

Adversarial AugmentedPCA

In adversarial AugmentedPCA (AAPCA), the augmenting objective is to make the factors orthogonal to a set of concomitant data, in addition to having the factors explain the variance of the original observed or primary data. AAPCA can be used in situations where one wishes to enforce invariance of latent components to a set of concomitant data, and is equivalent to an adversarial autoencoder with a single hidden layer. Below is a diagram depicting the relationship between primary data, concomitant data, and the resulting AAPCA factors.

AAPCA diagram

Documentation

Documentation for AugmentedPCA is available on this documentation site.

Provided documentation includes:

  • Motivation - Motivation behind AugmentedPCA models and the different approximate inference strategies.

  • Model formulation - Overview of different models and approximate inference strategies as well as more in-depth mathematical descriptions.

  • Tutorials - Step-by-step guide on how to use the different offered AugmentedPCA models.

  • Examples - Use case examples for the different models.

Dependencies

The AugmentedPCA package is written in Python, and requires Python >= 3.6 to run. AugmentedPCA relies on the following libraries and version numbers:

Installation

To install the latest stable release, use pip. Use the following command to install:

$ pip install augmented-pca

Issue Tracking and Reports

Please use the GitHub issue tracker associated with the AugmentedPCA repository for issue tracking, filing bug reports, and asking general questions about the package or project.

Quick Introduction

A quick guide to using AugmentedPCA is given in this section. For a more in-depth guide, see our documentation.

Importing AugmentedPCA Models

APCA models can be imported from the models.py module. Below we show an example of importing the AAPCA model.

# Import all AugmentedPCA models
from apca.models import AAPCA

Alternatively, all offered AugmentedPCA models can be imported at once.

# Import all AugmentedPCA models
from apca.models import *

Instantiating AugmentedPCA Models

APCA models are instantiated by assigning either an SAPCA or AAPCA object to a variable. During instantiation, one has the option to define parameters n_components, mu, which represent the number of components and the augmenting objective strength, respectively. Additionally, approximate inference strategy can be defined through the inference parameter.

# Define model parameters
n_components = 2        # factors will have dimensionality of 2
mu = 1.0                # augmenting objective strength equal to 1 
inference = 'encoded'   # encoded approximate inference strategy

# Instantiate adversarial AugmentedPCA model
aapca = AAPCA(n_components=n_components, mu=mu, inference=inference)

Fitting AugmentedPCA Models

APCA models closely follow the style and implemention of scikit-learn's PCA implementation, with many of the same methods and functionality. Similar to scikit-learn models, AugmentedPCA models are fit using the fit() method. fit() takes two parameters: X which represents the matrix of primary data and Y which represents the matrix of augmenting data.

# Import numpy
import numpy as np

# Generate synthetic data
# Note: primary and augmenting data must have same number of samples/same first dimension size
n_samp = 100
X = np.random.randn(n_samp, 20)   # primary data, 100 samples with dimensionality of 20
Y = np.random.randn(n_samp, 3)    # concomitant data, 100 samples with dimensionality of 3

# Fit adversarial AugmentedPCA instance
aapca.fit(X=X, Y=Y)

Alternatively, AugmentedPCA models can be fit using the fit_transform() method, which takes the same parameters as the fit() method but also returns a matrix of components or factors.

# Fit adversarial AugmentedPCA instance and generate components
S = aapca.fit_transform(X=X, Y=Y)

Approximate Inference Strategies

In this section, we give a brief overview of the different approximate inference strategies offered for AugmentedPCA. Inference strategy should be chosen based on the data on which the AugmentedPCA model will be used as well as the specific use case. Both SAPCA and AAPCA models use the jointly-encoded approximate inference strategy by default.

Local

In the local approximate inference strategy, the factors (local variables associated with each observation) are included in both the likelihood relating and the augmenting objective. Below is a diagram from our paper depicting the local inference strategy.

local inference diagram

Because the local variables are included in the augmenting objective, given new data we must have both primary and augmenting data to obtain factors. Thus, the local inference strategy should only be used for inference on new data when both primary and augmenting data are available. Below we show an example of how to fit a SAPCA model with local approximate inference strategy to training data and obtain factors for test data.

# Import numpy
import numpy as np

# Import supervised AugmentedPCA
from apca.models import SAPCA

# Generate synthetic data and labels
n_samp = 100
X = np.random.randn(n_samp, 20)
Y = np.random.randint(low=0, high=1, size=(n_samp, 1), dtype=int)

# Generate test/train splits
train_pct = 0.7
idx = np.arange(start=0, stop=101, step=1, dtype=int)
np.random.shuffle(idx)
n_train = int(train_pct * len(idx))
train_idx = idx[:n_train]
test_idx = idx[n_train:]

# Split data into test/train sets
X_train = X[train_idx, :]
X_test = X[test_idx, :]
Y_train = Y[train_idx, :]
Y_test = Y[test_idx, :]

# Instantiate supervised AugmentedPCA model with local approximate inference strategy
sapca = SAPCA(n_components=3, mu=5.0, inference='local')

# Fit supervised AugmentedPCA model
sapca.fit(X=X_train, Y_train)

# Generate components for test set
# Note: both primary and augmenting data are needed to obtain factors
S_test = sapca.transform(X=X_test, Y=Y_test)

Note that when factors are generated for the test set that the transform() method requires both the primary data X_test and labels Y_test be passed as parameters. For a more in-depth description of the local approximate inference strategy, see our paper or the corresponding documentation section.

Encoded

In the encoded approximate inference strategy, a linear encoder is used to transform the data into factors or components. This inference strategy is termed "encoded" because the augmenting objective is enforced via an encoding function. Below is a diagram depicting the encoded inference strategy.

encoded inference diagram

In contrast to the local inference strategy, when factors are generated for the test set under the encoded inference strategy the transform() method only requires the primary data X_test. Below we show an example of how to fit a SAPCA model with encoded approximate inference strategy to training data and obtain factors for test data.

# Instantiate supervised AugmentedPCA model model with encoded approximate inference strategy
sapca = SAPCA(n_components=3, mu=5.0, inference='encoded')

# Fit supervised AugmentedPCA model
# Note: both primary and augmenting data are required to fit the model
sapca.fit(X=X_train, Y_train)

# Generate components for test set
# Note: only primary data are needed to obtain factors
S_test = sapca.transform(X=X_test)

For a more in-depth description of the encoded approximate inference strategy, see our paper or the corresponding documentation section.

Jointly-Encoded

The jointly-encoded approximate inference strategy is similar to the encoded in that the augmenting objective is enforced through a linear encoding matrix. However, in the jointly-encoded inference strategy both the primary and augmenting data are required for computing factors, similar to the local inference strategy. Below is a diagram depicting the jointly-encoded inference strategy.

jointly-encoded inference diagram

Similar to the local inference strategy, when factors are generated for the test set under the jointly-encoded inference strategy the transform() method requires both the primary data X_test and augmenting data Y_test. Below we show an example of how to fit a SAPCA model with jointly-encoded approximate inference strategy to training data and obtain factors for test data.

# Instantiate supervised AugmentedPCA model model with encoded approximate inference strategy
sapca = SAPCA(n_components=3, mu=5.0, inference='encoded')

# Fit supervised AugmentedPCA model
# Note: both primary and augmenting data are required to fit the model
sapca.fit(X=X_train, Y_train)

# Generate components for test set
# Note: both primary and augmenting data are needed to obtain factors
S_test = sapca.transform(X=X_test)

For a more in-depth description of the jointly-encoded approximate inference strategy, see our paper or the corresponding documentation section.

Citation

Please cite our paper if you find this package helpful in your research:

@inproceedings{carson2021augmentedpca,
title={{AugmentedPCA}: {A} {P}ython {P}ackage of {S}upervised and {A}dversarial {L}inear {F}actor {M}odels},
author={{Carson IV}, William E. and Talbot, Austin and Carlson, David},
year={2021},
month={December},
booktitle={{P}roceedings of {L}earning {M}eaningful {R}epresentations of {L}ife {W}orkshop at {NeurIPS} 2021}}

Funding

This project was supported by the National Institute of Biomedical Imaging and Bioengineering and the National Institute of Mental Health through the National Institutes of Health BRAIN Initiative under Award Number R01EB026937.

Owner
Billy Carson
Biomedical Engineering PhD candidate at Duke University using machine learning to investigate neurodevelopmental conditions and learn about the human brain.
Billy Carson
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
Nest - A flexible tool for building and sharing deep learning modules

Nest - A flexible tool for building and sharing deep learning modules Nest is a flexible deep learning module manager, which aims at encouraging code

ZhouYanzhao 41 Oct 10, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
LBK 35 Dec 26, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022