COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset

Related tags

Deep Learningcopa-sse
Overview

COPA-SSE

Repository for COPA-SSE: Semi-Structured Explanations for Commonsense Reasoning.

Crowdsourcing protocol

COPA-SSE contains crowdsourced explanations for the Balanced COPA dataset, a variant of the Choice of Plausible Alternatives (COPA) benchmark. The explanations are formatted as a set of triple-like common sense statements with ConceptNet relations but freely written concepts.

Data format

dev-explained.jsonl and test-explained.jsonl each contain Balanced COPA samples with added explanations in .jsonl format. The question ids match the original questions of the development and test set, respectively.

Each entry contains:

  • the original question (matching format and ids)
  • human-explanations: a list of explanations each containing:
    • expl-id: the explanation id
    • text: the explanation in plain text (full sentences)
    • worker-id: anonymized worker id (the author of the explanation)
    • worker-avg: the average score the author got for their explanations
    • all-ratings: all collected ratings for the explanation
    • filtered-ratings: ratings excluding those that failed the control
    • triples: the triple-form explanation (a list of ConceptNet-like triples)

Example entry:

id: 1, 
asks-for: cause, 
most-plausible-alternative: 1,
p: "My body cast a shadow over the grass.", 
a1: "The sun was rising.", 
a2: "The grass was cut.", 
human-explanations: [
    {expl-id: f4d9b407-681b-4340-9be1-ac044f1c2230, 
     text: "Sunrise causes casted shadows.", 
     worker-id: 3a71407b-9431-49f9-b3ca-1641f7c05f3b, 
     worker-avg: 3.5832864694635025, 
     all-ratings: [1, 3, 3, 4, 3], 
     filtered-ratings: [3, 3, 4, 3], 
     filtered-avg-rating: 3.25, 
     triples: [["sunrise", "Causes", "casted shadows"]]
     }, ...]

Aggregated versions

graphs.pkl contains aggregated versions of the triples for each question in a dictionary format with COPA question ids as the key.

Each entry contains a list of edges, each being a tuple of (u, v, {'rel': relation, 'weight': weight}). Similar nodes were connected or merged with relatedto, depending on the cosine similarity between their SentenceTransformer embeddings. The weight is the average score of the explanation the edge originated from (summed if multiple), or 1.0 if the edge was automatically generated.

  • Note: not all graphs are (weakly) connected.

Example entry:

1: [('sunrise', 'casted_shadows', {'rel': 'causes', 'weight': 3.25}),
  ('sunrise', 'sun', {'rel': 'relatedto', 'weight': 1.0}),
  ('casted_shadows', 'the_shadow', {'rel': 'relatedto', 'weight': 1.0}),
  ('sun_rising', 'bringing_light', {'rel': 'hasproperty', 'weight': 4.25}),
  ('sun_rising', 'a_sun_raising', {'rel': 'relatedto', 'weight': 1.0}),
 ...
]

Citation

Thank you for your interest in our dataset! If you use it in your research, please cite:

@misc{brassard2022copasse,
    title={COPA-SSE: Semi-structured Explanations for Commonsense Reasoning},
    author={Ana Brassard and Benjamin Heinzerling and Pride Kavumba and Kentaro Inui},
    year={2022},
    eprint={2201.06777},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Ana Brassard
Ana Brassard
OpenCV, MediaPipe Pose Estimation, Affine Transform for Icon Overlay

Yoga Pose Identification and Icon Matching Project Goal Detect yoga poses performed by a user and overlay a corresponding icon image. Running the main

Anna Garverick 1 Dec 03, 2021
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Official implementation of "CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding" (CVPR, 2022)

CrossPoint: Self-Supervised Cross-Modal Contrastive Learning for 3D Point Cloud Understanding (CVPR'22) Paper Link | Project Page Abstract : Manual an

Mohamed Afham 152 Dec 23, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
This repository is for EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpretation Data

InterpretationData This repository is for our EMNLP 2021 paper: It is Not as Good as You Think! Evaluating Simultaneous Machine Translation on Interpr

4 Apr 21, 2022
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
VGGFace2-HQ - A high resolution face dataset for face editing purpose

The first open source high resolution dataset for face swapping!!! A high resolution version of VGGFace2 for academic face editing purpose

Naiyuan Liu 232 Dec 29, 2022
Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol.

Updated Updated for TTS(CE) = Also Known as TTN V3. The code requires the first server to be 'ttn' protocol. Introduction This balenaCloud (previously

Remko 1 Oct 17, 2021
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
TensorFlow implementation of "Variational Inference with Normalizing Flows"

[TensorFlow 2] Variational Inference with Normalizing Flows TensorFlow implementation of "Variational Inference with Normalizing Flows" [1] Concept Co

YeongHyeon Park 7 Jun 08, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
This dlib-based facial login system

Facial-Login-System This dlib-based facial login system is a technology capable of matching a human face from a digital webcam frame capture against a

Mushahid Ali 3 Apr 23, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023