The "breathing k-means" algorithm with datasets and example notebooks

Overview

The Breathing K-Means Algorithm (with examples)

The Breathing K-Means is an approximation algorithm for the k-means problem that (on average) is better (higher solution quality) and faster (lower CPU time usage) than k-means++.

Techreport: https://arxiv.org/abs/2006.15666 (submitted for publication)

Typical results for the "Birch" data set (100000 points drawn from a mixture of 100 circular Gaussians). k=100 Birch1 data set

Can you spot the mistakes? :-)

Installation from pypi

pip install bkmeans

Local installation to run the examples

Clone the repository

git clone https://github.com/gittar/breathing-k-means

Enter the top directory.

cd breathing-k-means

Create the conda environment 'bkm' (or any other name) via

conda env create -n bkm -f environment.yml

Activate the created environment via

conda activate bkm

To run a jupyter notebook with examples, type, e.g.:

jupyter lab notebooks/2D.ipynb

Content

The top level folder contains the following subfolders

  • data/ - data sets used in the notebooks

  • notebooks/ - jupyter notebooks with all examples from the technical report

  • src/

    • bkmeans.py - reference implementation of breathing k-means
  • misc/

    • aux.py - auxiliary functions
    • dataset.py - general class to administer and plot data sets
    • runfunctions.py - wrapper functions used in the notebook

API

The included class BKMeans is subclassed from scikit-learn's KMeans class and has, therefore, the same API. It can be used as a plug-in replacement for scikit-learn's KMeans.

There is one new parameters which can be ignored (left at default) for normal usage:

  • m (breathing depth), default: 5

The parameter m can also be used, however, to generate faster ( 1 < m < 5) or better (m>5) solutions. For details see the technical report.

Example 1: running on simple random data set

Code:

import numpy as np
from bkmeans import BKMeans

# generate random data set
X=np.random.rand(1000,2)

# create BKMeans instance
bkm = BKMeans(n_clusters=100)

# run the algorithm
bkm.fit(X)

# print SSE (inertia in scikit-learn terms)
print(bkm.inertia_)

Output:

1.1775040547902602

Example 2: comparison with k-means++ (multiple runs)

Code:

import numpy as np
from sklearn.cluster import KMeans
from bkmeans import BKMeans

# random 2D data set
X=np.random.rand(1000,2)

# number of centroids
k=100

for i in range(5):
    # kmeans++
    km = KMeans(n_clusters=k)
    km.fit(X)

    # breathing k-means
    bkm = BKMeans(n_clusters=k)
    bkm.fit(X)

    # relative SSE improvement of bkm over km++
    imp = 1 - bkm.inertia_/km.inertia_
    print(f"SSE improvement over k-means++: {imp:.2%}")

Output:

SSE improvement over k-means++: 3.38%
SSE improvement over k-means++: 4.16%
SSE improvement over k-means++: 6.14%
SSE improvement over k-means++: 6.79%
SSE improvement over k-means++: 4.76%

Acknowledgements

Kudos go the scikit-learn team for their excellent sklearn.cluster.KMeans class, also to the developers and maintainers of the other packages used: numpy, scipy, matplotlib, jupyterlab

Owner
Bernd Fritzke
Bernd Fritzke
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
K-FACE Analysis Project on Pytorch

Installation Setup with Conda # create a new environment conda create --name insightKface python=3.7 # or over conda activate insightKface #install t

Jung Jun Uk 7 Nov 10, 2022
Source code for "Pack Together: Entity and Relation Extraction with Levitated Marker"

PL-Marker Source code for Pack Together: Entity and Relation Extraction with Levitated Marker. Quick links Overview Setup Install Dependencies Data Pr

THUNLP 173 Dec 30, 2022
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition

Zen-NAS: A Zero-Shot NAS for High-Performance Deep Image Recognition How Fast Compare to Other Zero-Shot NAS Proxies on CIFAR-10/100 Pre-trained Model

190 Dec 29, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
MohammadReza Sharifi 27 Dec 13, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
Code for ECIR'20 paper Diagnosing BERT with Retrieval Heuristics

Bert Axioms This is the repository with the code for the Paper Diagnosing BERT with Retrieval Heuristics Required Data In order to run this code, you

Arthur Câmara 5 Jan 21, 2022
FluidNet re-written with ATen tensor lib

fluidnet_cxx: Accelerating Fluid Simulation with Convolutional Neural Networks. A PyTorch/ATen Implementation. This repository is based on the paper,

JoliBrain 50 Jun 07, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022