Improving Calibration for Long-Tailed Recognition (CVPR2021)

Overview

MiSLAS

Improving Calibration for Long-Tailed Recognition

Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia

[arXiv] [slide] [BibTeX]


Introduction: This repository provides an implementation for the CVPR 2021 paper: "Improving Calibration for Long-Tailed Recognition" based on LDAM-DRW and Decoupling models. Our study shows, because of the extreme imbalanced composition ratio of each class, networks trained on long-tailed datasets are more miscalibrated and over-confident. MiSLAS is a simple, and efficient two-stage framework for long-tailed recognition, which greatly improves recognition accuracy and markedly relieves over-confidence simultaneously.

Installation

Requirements

  • Python 3.7
  • torchvision 0.4.0
  • Pytorch 1.2.0
  • yacs 0.1.8

Virtual Environment

conda create -n MiSLAS python==3.7
source activate MiSLAS

Install MiSLAS

git clone https://github.com/Jia-Research-Lab/MiSLAS.git
cd MiSLAS
pip install -r requirements.txt

Dataset Preparation

Change the data_path in config/*/*.yaml accordingly.

Training

Stage-1:

To train a model for Stage-1 with mixup, run:

(one GPU for CIFAR-10-LT & CIFAR-100-LT, four GPUs for ImageNet-LT, iNaturalist 2018, and Places-LT)

python train_stage1.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage1_mixup.yaml

DATASETNAME can be selected from cifar10, cifar100, imagenet, ina2018, and places.

ARCH can be resnet32 for cifar10/100, resnet50/101/152 for imagenet, resnet50 for ina2018, and resnet152 for places, respectively.

Stage-2:

To train a model for Stage-2 with one GPU (all the above datasets), run:

python train_stage2.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage2_mislas.yaml resume /path/to/checkpoint/stage1

The saved folder (including logs and checkpoints) is organized as follows.

MiSLAS
├── saved
│   ├── modelname_date
│   │   ├── ckps
│   │   │   ├── current.pth.tar
│   │   │   └── model_best.pth.tar
│   │   └── logs
│   │       └── modelname.txt
│   ...   

Evaluation

To evaluate a trained model, run:

python eval.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage1_mixup.yaml  resume /path/to/checkpoint/stage1
python eval.py --cfg ./config/DATASETNAME/DATASETNAME_ARCH_stage2_mislas.yaml resume /path/to/checkpoint/stage2

Results and Models

1) CIFAR-10-LT and CIFAR-100-LT

  • Stage-1 (mixup):
Dataset Top-1 Accuracy ECE (15 bins) Model
CIFAR-10-LT IF=10 87.6% 11.9% link
CIFAR-10-LT IF=50 78.1% 2.49% link
CIFAR-10-LT IF=100 72.8% 2.14% link
CIFAR-100-LT IF=10 59.1% 5.24% link
CIFAR-100-LT IF=50 45.4% 4.33% link
CIFAR-100-LT IF=100 39.5% 8.82% link
  • Stage-2 (MiSLAS):
Dataset Top-1 Accuracy ECE (15 bins) Model
CIFAR-10-LT IF=10 90.0% 1.20% link
CIFAR-10-LT IF=50 85.7% 2.01% link
CIFAR-10-LT IF=100 82.5% 3.66% link
CIFAR-100-LT IF=10 63.2% 1.73% link
CIFAR-100-LT IF=50 52.3% 2.47% link
CIFAR-100-LT IF=100 47.0% 4.83% link

Note: To obtain better performance, we highly recommend changing the weight decay 2e-4 to 5e-4 on CIFAR-LT.

2) Large-scale Datasets

  • Stage-1 (mixup):
Dataset Arch Top-1 Accuracy ECE (15 bins) Model
ImageNet-LT ResNet-50 45.5% 7.98% link
iNa'2018 ResNet-50 66.9% 5.37% link
Places-LT ResNet-152 29.4% 16.7% link
  • Stage-2 (MiSLAS):
Dataset Arch Top-1 Accuracy ECE (15 bins) Model
ImageNet-LT ResNet-50 52.7% 1.78% link
iNa'2018 ResNet-50 71.6% 7.67% link
Places-LT ResNet-152 40.4% 3.41% link

Citation

Please consider citing MiSLAS in your publications if it helps your research. :)

@inproceedings{zhong2021mislas,
    title={Improving Calibration for Long-Tailed Recognition},
    author={Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia},
    booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year={2021},
}

Contact

If you have any questions about our work, feel free to contact us through email (Zhisheng Zhong: [email protected]) or Github issues.

Owner
DV Lab
Deep Vision Lab
DV Lab
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
Activity image-based video retrieval

Cross-modal-retrieval Our approach is focus on Activity Image-to-Video Retrieval (AIVR) task. The compared methods are state-of-the-art single modalit

BCMI 75 Oct 21, 2021
SoGCN: Second-Order Graph Convolutional Networks

SoGCN: Second-Order Graph Convolutional Networks This is the authors' implementation of paper "SoGCN: Second-Order Graph Convolutional Networks" in Py

Yuehao 7 Aug 16, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

PyTorch Implementation of our paper Explain Me the Painting: Multi-Topic Knowledgeable Art Description Generation

Zechen Bai 12 Jul 08, 2022
Plug and play transformer you can find network structure and official complete code by clicking List

Plug-and-play Module Plug and play transformer you can find network structure and official complete code by clicking List The following is to quickly

8 Mar 27, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Pytorch implementation for "Open Compound Domain Adaptation" (CVPR 2020 ORAL)

Open Compound Domain Adaptation [Project] [Paper] [Demo] [Blog] Overview Open Compound Domain Adaptation (OCDA) is the author's re-implementation of t

Zhongqi Miao 137 Dec 15, 2022
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
Generative Adversarial Text-to-Image Synthesis

###Generative Adversarial Text-to-Image Synthesis Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, Honglak Lee This is the

Scott Ellison Reed 883 Dec 31, 2022
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022