Streamlit component for TensorBoard, TensorFlow's visualization toolkit

Overview

streamlit-tensorboard

Streamlit App

This is a work-in-progress, providing a function to embed TensorBoard, TensorFlow's visualization toolkit, in Streamlit apps.

Installation 🎈

pip install --upgrade streamlit-tensorboard

Example Usage 💻

import streamlit as st
from streamlit_tensorboard import st_tensorboard
import tensorflow as tf

import datetime
import random

mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

def create_model():
    return tf.keras.models.Sequential(
        [
            tf.keras.layers.Flatten(input_shape=(28, 28)),
            tf.keras.layers.Dense(512, activation="relu"),
            tf.keras.layers.Dropout(0.2),
            tf.keras.layers.Dense(10, activation="softmax"),
        ]
    )

model = create_model()
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

logdir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=logdir, histogram_freq=1)

model.fit(
    x=x_train,
    y=y_train,
    epochs=5,
    validation_data=(x_test, y_test),
    callbacks=[tensorboard_callback],
)

# Start TensorBoard
st_tensorboard(logdir=logdir, port=6006, width=1080)

st_tensorboard

Contributing 🛠️

Please file a new GitHub issue (if one doesn't already exist) for bugs, feature requests, suggestions for improvements, etc. If you have solutions to any open issues, feel free to open a Pull Request!

Supported Platforms

  1. Ubuntu
  2. Debian GNU/Linux
  3. macOS ( ⚠️ unverified)

Windows is currently not supported. PRs for added Windows support are welcome as fix to this issue.

Comments
  • Fixing Windows support by changing logdir to POSIX format

    Fixing Windows support by changing logdir to POSIX format

    Using pathlib to change the logdir path to POSIX format. The change would make the shlex.split work properly, thus making it work on Windows, and it will still work on Linux.

    opened by ansonnn07 2
  • Refuses to connect on Streamlit sharing

    Refuses to connect on Streamlit sharing

    image

    The issue has to do with network permissions on the remote host. Port 6006 should be opened on the remote host and incoming/outgoing connections should be allowed at remote host:6006.

    opened by snehankekre 1
  • Works on MacOS

    Works on MacOS

    I read in the readme that Streamlit-tensorboard is unverified on macOS. Upon trying, I noticed a delay in the TensorBoard loading. Opening the port 6006 on another tab, helped solve this issue of the delay.

    opened by 259mit 0
  • Support several comma-separated paths in logdir

    Support several comma-separated paths in logdir

    Hi @snehankekre Many thanks for the contribution. Just wondering whether it would be possible to support passing to the logdir argument of st_tensorboard a list of comma-separated paths to render several specific experiments, e.g. in the original tensorboard call you can specify it as follows:

    tensorboard --logdir=name1:/path/to/logs/1,name2:/path/to/logs/2

    Regards

    enhancement help wanted good first issue 
    opened by davidjimenezphd 1
  • Reuse TensorBoard on port {port} (pid {pid}) if opened previously

    Reuse TensorBoard on port {port} (pid {pid}) if opened previously

    Each widget interaction with Streamlitt causes the script to rerun from top to bottom. This execution model leads to the creation of a new TensorBoard server for every interaction and new connection to the Streamlit app.

    Desired behavior:

    1. If a TensorBoard server is running, connect to it instead of opening a new one.
    2. Reuse cached connection for viewers of the app. Do not open a new TensorBoard for each viewer.
    bug help wanted 
    opened by snehankekre 3
Releases(0.0.2)
Owner
Snehan Kekre
Documentation Writer @streamlit. Formerly, @Coursera.
Snehan Kekre
A simple and lightweight genetic algorithm for optimization of any machine learning model

geneticml This package contains a simple and lightweight genetic algorithm for optimization of any machine learning model. Installation Use pip to ins

Allan Barcelos 8 Aug 10, 2022
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
PyTorch implementation of Off-policy Learning in Two-stage Recommender Systems

Off-Policy-2-Stage This repo provides a PyTorch implementation of the MovieLens experiments for the following paper: Off-policy Learning in Two-stage

Jiaqi Ma 25 Dec 12, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Multi-Car Racing Gym Environment This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment. This env

Igor Gilitschenski 56 Nov 01, 2022
Pytorch code for our paper "Feedback Network for Image Super-Resolution" (CVPR2019)

Feedback Network for Image Super-Resolution [arXiv] [CVF] [Poster] Update: Our proposed Gated Multiple Feedback Network (GMFN) will appear in BMVC2019

Zhen Li 539 Jan 06, 2023
Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021)

Generative vs Discriminative: Rethinking The Meta-Continual Learning (NeurIPS 2021) In this repository we provide PyTorch implementations for GeMCL; a

4 Apr 15, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022