A 10000+ hours dataset for Chinese speech recognition

Overview

WenetSpeech

Official website | Paper

A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition

WenetSpeech

Download

Please visit the official website, read the license, and follow the instruction to download the data.

Benchmark

Toolkit Dev Test_Net Test_Meeting AIShell-1
Kaldi 9.07 12.83 24.72 5.41
ESPNet 9.70 8.90 15.90 3.90
WeNet 8.88 9.70 15.59 4.61

Description

Creation

All the data are collected from YouTube and Podcast. Optical character recognition (OCR) and automatic speech recognition (ASR) techniques are adopted to label each YouTube and Podcast recording, respectively. To improve the quality of the corpus, we use a novel end-to-end label error detection method to further validate and filter the data.

Categories

In summary, WenetSpeech groups all data into 3 categories, as the following table shows:

Set Hours Confidence Usage
High Label 10005 >=0.95 Supervised Training
Weak Label 2478 [0.6, 0.95] Semi-supervised or noise training
Unlabel 9952 / Unsupervised training or Pre-training
In Total 22435 / All above

High Label Data

We classify the high label into 10 groups according to its domain, speaking style, and scenarios.

Domain Youtube Podcast Total
audiobook 0 250.9 250.9
commentary 112.6 135.7 248.3
documentary 386.7 90.5 477.2
drama 4338.2 0 4338.2
interview 324.2 614 938.2
news 0 868 868
reading 0 1110.2 1110.2
talk 204 90.7 294.7
variety 603.3 224.5 827.8
others 144 507.5 651.5
Total 6113 3892 10005

As shown in the following table, we provide 3 training subsets, namely S, M and L for building ASR systems on different data scales.

Training Subsets Confidence Hours
L [0.95, 1.0] 10005
M 1.0 1000
S 1.0 100

Evaluation Sets

Evaluation Sets Hours Source Description
DEV 20 Internet Specially designed for some speech tools which require cross-validation set in training
TEST_NET 23 Internet Match test
TEST_MEETING 15 Real meeting Mismatch test which is a far-field, conversational, spontaneous, and meeting dataset

Contributors

ACKNOWLEDGEMENTS

  • WenetSpeech refers a lot of work of GigaSpeech, and we thank Jiayu Du and Guoguo Chen for their suggestions on this work.
  • We thank Xi'an Future AI Innovation Center for providing hosting service for WenetSpeech. We also thank MindSpore for the support of this work, which is a new deep learning computing framework.
  • Our gratitude goes to Lianhui Zhang and Yu Mao for collecting some of the YouTube data.
Owner
Production First and Production Ready End-to-End Speech Toolkit
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
This repo provides the official code for TransBTS: Multimodal Brain Tumor Segmentation Using Transformer (https://arxiv.org/pdf/2103.04430.pdf).

TransBTS: Multimodal Brain Tumor Segmentation Using Transformer This repo is the official implementation for TransBTS: Multimodal Brain Tumor Segmenta

Raymond 247 Dec 28, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
Implementation of "Large Steps in Inverse Rendering of Geometry"

Large Steps in Inverse Rendering of Geometry ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia), December 2021. Baptiste Nicolet · Alec Jacob

RGL: Realistic Graphics Lab 274 Jan 06, 2023
joint detection and semantic segmentation, based on ultralytics/yolov5,

Multi YOLO V5——Detection and Semantic Segmentation Overeview This is my undergraduate graduation project which based on ultralytics YOLO V5 tag v5.0.

477 Jan 06, 2023
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
A PyTorch implementation of DenseNet.

A PyTorch Implementation of DenseNet This is a PyTorch implementation of the DenseNet-BC architecture as described in the paper Densely Connected Conv

Brandon Amos 771 Dec 15, 2022
Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective

Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective Zhengzhuo Xu, Zenghao Chai, Chun Yuan This is the PyTorch implement

Sincere 16 Dec 15, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently.

TL;DR Ignite is a high-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Click on the image to

4.2k Jan 01, 2023
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation

STCN Rethinking Space-Time Networks with Improved Memory Coverage for Efficient Video Object Segmentation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [a

Rex Cheng 456 Dec 12, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022