A 10000+ hours dataset for Chinese speech recognition

Overview

WenetSpeech

Official website | Paper

A 10000+ Hours Multi-domain Chinese Corpus for Speech Recognition

WenetSpeech

Download

Please visit the official website, read the license, and follow the instruction to download the data.

Benchmark

Toolkit Dev Test_Net Test_Meeting AIShell-1
Kaldi 9.07 12.83 24.72 5.41
ESPNet 9.70 8.90 15.90 3.90
WeNet 8.88 9.70 15.59 4.61

Description

Creation

All the data are collected from YouTube and Podcast. Optical character recognition (OCR) and automatic speech recognition (ASR) techniques are adopted to label each YouTube and Podcast recording, respectively. To improve the quality of the corpus, we use a novel end-to-end label error detection method to further validate and filter the data.

Categories

In summary, WenetSpeech groups all data into 3 categories, as the following table shows:

Set Hours Confidence Usage
High Label 10005 >=0.95 Supervised Training
Weak Label 2478 [0.6, 0.95] Semi-supervised or noise training
Unlabel 9952 / Unsupervised training or Pre-training
In Total 22435 / All above

High Label Data

We classify the high label into 10 groups according to its domain, speaking style, and scenarios.

Domain Youtube Podcast Total
audiobook 0 250.9 250.9
commentary 112.6 135.7 248.3
documentary 386.7 90.5 477.2
drama 4338.2 0 4338.2
interview 324.2 614 938.2
news 0 868 868
reading 0 1110.2 1110.2
talk 204 90.7 294.7
variety 603.3 224.5 827.8
others 144 507.5 651.5
Total 6113 3892 10005

As shown in the following table, we provide 3 training subsets, namely S, M and L for building ASR systems on different data scales.

Training Subsets Confidence Hours
L [0.95, 1.0] 10005
M 1.0 1000
S 1.0 100

Evaluation Sets

Evaluation Sets Hours Source Description
DEV 20 Internet Specially designed for some speech tools which require cross-validation set in training
TEST_NET 23 Internet Match test
TEST_MEETING 15 Real meeting Mismatch test which is a far-field, conversational, spontaneous, and meeting dataset

Contributors

ACKNOWLEDGEMENTS

  • WenetSpeech refers a lot of work of GigaSpeech, and we thank Jiayu Du and Guoguo Chen for their suggestions on this work.
  • We thank Xi'an Future AI Innovation Center for providing hosting service for WenetSpeech. We also thank MindSpore for the support of this work, which is a new deep learning computing framework.
  • Our gratitude goes to Lianhui Zhang and Yu Mao for collecting some of the YouTube data.
Owner
Production First and Production Ready End-to-End Speech Toolkit
Hierarchical Uniform Manifold Approximation and Projection

HUMAP Hierarchical Manifold Approximation and Projection (HUMAP) is a technique based on UMAP for hierarchical non-linear dimensionality reduction. HU

Wilson Estécio Marcílio Júnior 160 Jan 06, 2023
PyTorch Implementations for DeeplabV3 and PSPNet

Pytorch-segmentation-toolbox DOC Pytorch code for semantic segmentation. This is a minimal code to run PSPnet and Deeplabv3 on Cityscape dataset. Shor

Zilong Huang 746 Dec 15, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Relational Embedding for Few-Shot Classification (ICCV 2021) Dahyun Kang, Heeseung Kwon, Juhong Min, Minsu Cho [paper], [project hompage] We propose t

Dahyun Kang 82 Dec 24, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
A machine learning library for spiking neural networks. Supports training with both torch and jax pipelines, and deployment to neuromorphic hardware.

Rockpool Rockpool is a Python package for developing signal processing applications with spiking neural networks. Rockpool allows you to build network

SynSense 21 Dec 14, 2022