Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

Overview

CAPE 🌴 pylint pytest

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Setup 🔧

Minimum requirements:

torch >= 1.10.0

Install from source:

git clone https://github.com/gcambara/cape.git
cd cape
pip install --editable ./

Usage 📖

Ready to go along with PyTorch's official implementation of Transformers. Default initialization behaves identically as sinusoidal positional embeddings, summing them up to your content embeddings:

from torch import nn
from cape import CAPE1d

pos_emb = CAPE1d(d_model=512)
transformer = nn.Transformer(d_model=512)

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x = pos_emb(x) # forward sums the positional embedding by default
x = transformer(x)

Alternatively, you can get positional embeddings separately

x = torch.randn(10, 32, 512)
pos_emb = pos_emb.compute_pos_emb(x)

scale = 512**0.5
x = (scale * x) + pos_emb
x = transformer(x)

Let's see a few examples of CAPE initialization for different modalities, inspired by the original paper experiments.

CAPE for text 🔤

CAPE1d is ready to be applied to text. Keep max_local_shift between 0 and 0.5 to shift local positions without disordering them.

from cape import CAPE1d
pos_emb = CAPE1d(d_model=512, max_global_shift=5.0, 
                 max_local_shift=0.5, max_global_scaling=1.03, 
                 normalize=False)

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x = pos_emb(x)

Padding is supported by indicating the length of samples in the forward method, with the x_lengths argument. For example, the original length of samples is 7, although they have been padded to sequence length 10.

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x_lengths = torch.ones(32)*7
x = pos_emb(x, x_lengths=x_lengths)

CAPE for audio 🎙️

CAPE1d for audio is applied similarly to text. Use positions_delta argument to set the separation in seconds between time steps, and x_lengths for indicating sample durations in case there is padding.

For instance, let's consider no padding and same hop size (30 ms) at every sample in the batch:

# Max global shift is 60 s.
# Max local shift is set to 0.5 to maintain positional order.
# Max global scaling is 1.1, according to WSJ recipe.
# Freq scale is 30 to ensure that 30 ms queries are possible with long audios
from cape import CAPE1d
pos_emb = CAPE1d(d_model=512, max_global_shift=60.0, 
                 max_local_shift=0.5, max_global_scaling=1.1, 
                 normalize=True, freq_scale=30.0)

x = torch.randn(100, 32, 512) # seq_len, batch_size, n_feats
positions_delta = 0.03 # 30 ms of stride
x = pos_emb(x, positions_delta=positions_delta)

Now, let's imagine that the original duration of all samples is 2.5 s, although they have been padded to 3.0 s. Hop size is 30 ms for every sample in the batch.

x = torch.randn(100, 32, 512) # seq_len, batch_size, n_feats

duration = 2.5
positions_delta = 0.03
x_lengths = torch.ones(32)*duration
x = pos_emb(x, x_lengths=x_lengths, positions_delta=positions_delta)

What if the hop size is different for every sample in the batch? E.g. first half of the samples have stride of 30 ms, and the second half of 50 ms.

positions_delta = 0.03
positions_delta = torch.ones(32)*positions_delta
positions_delta[16:] = 0.05
x = pos_emb(x, positions_delta=positions_delta)
positions_delta
tensor([0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300,
        0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0500, 0.0500,
        0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500,
        0.0500, 0.0500, 0.0500, 0.0500, 0.0500])

Lastly, let's consider a very rare case, where hop size is different for every sample in the batch, and is not constant within some samples. E.g. stride of 30 ms for the first half of samples, and 50 ms for the second half. However, the hop size of the very first sample linearly increases for each time step.

from einops import repeat
positions_delta = 0.03
positions_delta = torch.ones(32)*positions_delta
positions_delta[16:] = 0.05
positions_delta = repeat(positions_delta, 'b -> b new_axis', new_axis=100)
positions_delta[0, :] *= torch.arange(1, 101)
x = pos_emb(x, positions_delta=positions_delta)
positions_delta
tensor([[0.0300, 0.0600, 0.0900,  ..., 2.9400, 2.9700, 3.0000],
        [0.0300, 0.0300, 0.0300,  ..., 0.0300, 0.0300, 0.0300],
        [0.0300, 0.0300, 0.0300,  ..., 0.0300, 0.0300, 0.0300],
        ...,
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500],
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500],
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500]])

CAPE for ViT 🖼️

CAPE2d is used for embedding positions in image patches. Scaling of positions between [-1, 1] is done within the module, whether patches are square or non-square. Thus, set max_local_shift between 0 and 0.5, and the scale of local shifts will be adjusted according to the height and width of patches. Beyond values of 0.5 the order of positions might be altered, do this at your own risk!

from cape import CAPE2d
pos_emb = CAPE2d(d_model=512, max_global_shift=0.5, 
                 max_local_shift=0.5, max_global_scaling=1.4)

# Case 1: square patches
x = torch.randn(16, 16, 32, 512) # height, width, batch_size, n_feats
x = pos_emb(x)

# Case 2: non-square patches
x = torch.randn(24, 16, 32, 512) # height, width, batch_size, n_feats
x = pos_emb(x)

Citation ✍️

I just did this PyTorch implementation following the paper's Python code and the Flashlight recipe in C++. All the credit goes to the original authors, please cite them if you use this for your research project:

@inproceedings{likhomanenko2021cape,
title={{CAPE}: Encoding Relative Positions with Continuous Augmented Positional Embeddings},
author={Tatiana Likhomanenko and Qiantong Xu and Gabriel Synnaeve and Ronan Collobert and Alex Rogozhnikov},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=n-FqqWXnWW}
}

Acknowledgments 🙏

Many thanks to the paper's authors for code reviewing and clarifying doubts about the paper and the implementation. :)

You might also like...
Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

A PyTorch Implementation of
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

PyTorch implementation of the NIPS-17 paper
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Styled Augmented Translation
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Releases(v1.0.0)
Owner
Guillermo Cámbara
🎙️ PhD Candidate in Self-Supervised Learning + Speech Recognition @ Universitat Pompeu Fabra & Telefónica Research
Guillermo Cámbara
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Space Invaders For Python

Space-Invaders Just download or clone the git repository. To run the Space Invader game you need to have pyhton installed in you system. If you dont h

Fei 5 Jul 27, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
This's an implementation of deepmind Visual Interaction Networks paper using pytorch

Visual-Interaction-Networks An implementation of Deepmind visual interaction networks in Pytorch. Introduction For the purpose of understanding the ch

Mahmoud Gamal Salem 166 Dec 06, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
R interface to fast.ai

R interface to fastai The fastai package provides R wrappers to fastai. The fastai library simplifies training fast and accurate neural nets using mod

113 Dec 20, 2022
A set of tools for Namebase and HNS

HNS-TOOLS A set of tools for Namebase and HNS To install: pip install -r requirements.txt To run: py main.py My Namebase referral code: http://namebas

RunDavidMC 7 Apr 08, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Image processing in Python

scikit-image: Image processing in Python Website (including documentation): https://scikit-image.org/ Mailing list: https://mail.python.org/mailman3/l

Image Processing Toolbox for SciPy 5.2k Dec 31, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022