Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Overview

Vision Longformer

This project provides the source code for the vision longformer paper.

Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Highlights

  • Fast Pytorch implementation of conv-like sliding-window local attention
  • Fast random-shifting training strategy of vision longformer
  • A versatile multi-scale vision transformer class (MsViT) that can support various efficient attention mechanisms
  • Compare multiple efficient attention mechanisms: vision-longformer ("global + conv_like local") attention, performer attention, global-memory attention, linformer attention and spatial reduction attention.
  • Provides pre-trained models for different attention mechanisms.

Updates

  • 03/29/2021: First version of vision longformer paper posted on Arxiv.
  • 04/30/2021: Performance improved by adding relative positional bias, inspired by Swin Transformer! Training is accelerated significantly by adding random-shifting training strategy. First version of code released.

Multi-scale Vision Transformer Architecture

Vision Longformer, and more generally the Multi-scale Vision Transformer (MsViT), follows the multi-stage design of ResNet. Each stage is a (slightly modified) vision transformer with some user-specified attenion mechanism. Currently, five attention mechanisms are supported:

# choices=['full', 'longformerhand', 'linformer', 'srformer', 'performer', 'longformerauto', 'longformer_cuda']
_C.MODEL.VIT.MSVIT.ATTN_TYPE = 'longformerhand'

As an example, a 3-stage multi-scale model architecture is specified by the MODEL.VIT.MSVIT.ARCH:

_C.MODEL.VIT.MSVIT.ARCH = 'l1,h3,d192,n1,s1,g1,p16,f7,a1_l2,h6,d384,n10,s0,g1,p2,f7,a1_l3,h12,d796,n1,s0,g1,p2,f7,a1'

Configs of different stages are separated by _. For each stage, the meaning of the config l*,h*,d*,n*,s*,g*,p*,f*,a* is specified as below.

symbol l h d n s g p f a
Name stage num_heads hidden_dim num_layers is_parse_attention num_global_tokens patch_size num_feats absolute_position_embedding
Range [1,2,3,4] N+ N+ N+ [0, 1] N N N [0,1]

Here, N stands for natural numbers including 0, and N+ stands for positive integers.

The num_feats (number of features) field, i.e., f, is overloaded for different attention mechanisms:

linformer: number of features

performer: number of (random orthogonal) features

srformer: spatial reduction ratio

longformer: one sided window size (not including itself, actual window size is 2 * f + 1 for MSVIT.SW_EXACT = 1 and 3 * f for MSVIT.SW_EXACT = 0/-1).

The following are the main model architectures used in Vision Longformer paper.

Model size stage_1 stage_2 stage_3 stage_4
Tiny n1,p4,h1,d48 n1,p2,h3,d96 n9,p2,h3,d192 n1,p2,h6,d384
Small n1,p4,h3,d96 n2,p2,h3,d192 n8,p2,h6,d384 n1,p2,h12,d768
Medium-Deep n1,p4,h3,d96 n4,p2,h3,d192 n16,p2,h6,d384 n1,p2,h12,d768
Medium-Wide n1,p4,h3,d192 n2,p2,h6,d384 n8,p2,h8,d512 n1,p2,h12,d768
Base-Deep n1,p4,h3,d96 n8,p2,h3,d192 n24,p2,h6,d384 n1,p2,h12,d768
Base-Wide n1,p4,h3,d192 n2,p2,h6,d384 n8,p2,h12,d768 n1,p2,h16,d1024

Model Performance

Main Results on ImageNet and Pretrained Models

Vision Longformer with absolute positional embedding

name pretrain resolution [email protected] [email protected] #params FLOPs 22K model 1K model
ViL-Tiny ImageNet-1K 224x224 76.3 93.3 6.7M 1.43G - ckpt, config
ViL-Small ImageNet-1K 224x224 82.0 95.8 24.6M 5.12G - ckpt, config
ViL-Medium-Deep ImageNet-1K 224x224 83.3 96.3 39.7M 9.1G - ckpt, config
ViL-Medium-Wide ImageNet-1K 224x224 82.9 96.4 39.8M 11.3G - ckpt, config
ViL-Medium-Deep ImageNet-22K 384x384 85.6 97.7 39.7M 29.4G ckpt, config ckpt, config
ViL-Medium-Wide ImageNet-22K 384x384 84.7 97.3 39.8M 35.1G ckpt, config ckpt, config
ViL-Base-Deep ImageNet-22K 384x384 86.0 97.9 55.7M 45.3G ckpt, config ckpt, config
ViL-Base-Wide ImageNet-22K 384x384 86.2 98.0 79.0M 55.8G ckpt, config ckpt, config

Vision Longformer with relative positional embedding and comparison with Swin Transformers

name pretrain resolution [email protected] [email protected] #params FLOPs 22K model 1K model
ViL-Tiny ImageNet-1K 224x224 76.65 93.55 6.7M 1.43G - ckpt config
ViL-Small ImageNet-1K 224x224 82.39 95.92 24.6M 5.12G - ckpt config
ViL-Medium-Deep ImageNet-1K 224x224 83.52 96.52 39.7M 9.1G - ckpt config
ViL-Medium-Deep ImageNet-22K 384x384 85.73 97.8 39.7M 29.4G ckpt config ckpt config
ViL-Base-Deep ImageNet-22K 384x384 86.11 97.89 55.7M 45.3G ckpt config ckpt config
--- --- --- --- --- --- --- --- ---
Swin-Tiny (2-2-6-2) ImageNet-1K 224x224 81.2 95.5 28M 4.5G - from swin repo
ViL-Swin-Tiny (2-2-6-2) ImageNet-1K 224x224 82.71 95.95 28M 5.33G - ckpt config
Swin-Small (2-2-18-2) ImageNet-1K 224x224 83.2 96.2 50M 8.7G - from swin repo
ViL-Swin-Small (2-2-18-2) ImageNet-1K 224x224 83.7 96.43 50M 9.85G - ckpt config

Results of other attention mechanims (Small size)

Attention pretrain resolution [email protected] [email protected] #params FLOPs 22K model 1K model
full ImageNet-1K 224x224 81.9 95.8 24.6M 6.95G - ckpt, config
longformer ImageNet-1K 224x224 82.0 95.8 24.6M 5.12G - ckpt, config
--- --- --- --- --- --- --- --- ---
linformer ImageNet-1K 224x224 81.0 95.4 26.3M 5.62G - ckpt, config
srformer/64 ImageNet-1K 224x224 76.4 92.9 52.9M 3.97G - ckpt, config
srformer/32 ImageNet-1K 224x224 79.9 94.9 31.1M 4.28G - ckpt, config
global ImageNet-1K 224x224 79.0 94.5 24.9M 6.78G - ckpt, config
performer ImageNet-1K 224x224 78.7 94.3 24.8M 6.26G - ckpt, config
--- --- --- --- --- --- --- --- ---
partial linformer ImageNet-1K 224x224 81.8 95.9 25.8M 5.21G - ckpt, config
partial srformer/32 ImageNet-1K 224x224 81.6 95.7 26.4M 4.57G - ckpt, config
partial global ImageNet-1K 224x224 81.4 95.7 24.9M 6.3G - ckpt, config
partial performer ImageNet-1K 224x224 81.7 95.7 24.7M 5.52G - ckpt, config

See more results on comparing different efficient attention mechanisms in Table 13 and Table 14 in the Vision Longformer paper.

Main Results on COCO object detection and instance segmentation (with absolute positional embedding)

Vision Longformer with absolute positional embedding

Backbone Method pretrain Lr Schd box mAP mask mAP #params FLOPs
ViL-Tiny RetinaNet ImageNet-1K 1x 38.8 -- 16.64M 182.7G
ViL-Tiny RetinaNet ImageNet-1K 3x 40.7 -- 16.64M 182.7G
ViL-Small RetinaNet ImageNet-1K 1x 41.6 -- 35.68M 254.8G
ViL-Small RetinaNet ImageNet-1K 3x 42.9 -- 35.68M 254.8G
ViL-Medium (D) RetinaNet ImageNet-1K 1x 42.9 -- 50.77M 330.4G
ViL-Medium (D) RetinaNet ImageNet-1K 3x 43.7 -- 50.77M 330.4G
ViL-Base (D) RetinaNet ImageNet-1K 1x 44.3 -- 66.74M 420.9G
ViL-Base (D) RetinaNet ImageNet-1K 3x 44.7 -- 66.74M 420.9G
--- --- --- --- --- --- --- ---
ViL-Tiny Mask R-CNN ImageNet-1K 1x 38.7 36.2 26.9M 145.6G
ViL-Tiny Mask R-CNN ImageNet-1K 3x 41.2 37.9 26.9M 145.6G
ViL-Small Mask R-CNN ImageNet-1K 1x 41.8 38.5 45.0M 218.3G
ViL-Small Mask R-CNN ImageNet-1K 3x 43.4 39.6 45.0M 218.3G
ViL-Medium (D) Mask R-CNN ImageNet-1K 1x 43.4 39.7 60.1M 293.8G
ViL-Medium (D) Mask R-CNN ImageNet-1K 3x 44.6 40.7 60.1M 293.8G
ViL-Base (D) Mask R-CNN ImageNet-1K 1x 45.1 41.0 76.1M 384.4G
ViL-Base (D) Mask R-CNN ImageNet-1K 3x 45.7 41.3 76.1M 384.4G

See more fine-grained results in Table 6 and Table 7 in the Vision Longformer paper.

Results of other attention mechanims (Small size)

Backbone Method pretrain Lr Schd box mAP mask mAP #params FLOPs Memory
srformer/64 Mask R-CNN ImageNet-1K 1x 35.7 33.6 73.3M 224.1G 7.1G
srformer/32 Mask R-CNN ImageNet-1K 1x 39.8 36.8 51.5M 268.3G 13.6G
Partial srformer/32 Mask R-CNN ImageNet-1K 1x 41.1 38.1 46.8M 352.1G 22.6G
global Mask R-CNN ImageNet-1K 1x 34.1 32.5 45.2M 226.4G 7.6G
Partial global Mask R-CNN ImageNet-1K 1x 41.3 38.2 45.1M 326.5G 20.1G
performer Mask R-CNN ImageNet-1K 1x 35.0 33.1 45.0M 251.5G 8.4G
Partial performer Mask R-CNN ImageNet-1K 1x 41.7 38.4 45.0M 343.7G 20.0G
ViL Mask R-CNN ImageNet-1K 1x 41.3. 38.1 45.0M 218.3G 7.4G
Partial ViL Mask R-CNN ImageNet-1K 1x 42.6 39.3 45.0M 326.8G 19.5G

Compare different implementations of vision longformer

Please go to Implementation for implementation details of vision longformer.

Training/Testing Vision Longformer on Local Machine

Prepare datasets

One needs to download zip files of ImageNet (train.zip, train_map.txt, val.zip, val_map.txt) under the specified data folder, e.g., the default src/datasets/imagenet. The CIFAR10, CIFAR100 and MNIST can be automatically downloaded.

With the default setting, we should have the following files in the /root/datasets directory:

root (root folder)
├── datasets (folder with all the datasets and pretrained models)
├──── imagenet/ (imagenet dataset and pretrained models)
├────── 2012/
├───────── train.zip
├───────── val.zip
├───────── train_map.txt
├───────── val_map.txt
├──── CIFAR10/ (CIFAR10 dataset and pretrained models)
├──── CIFAR100/ (CIFAR100 dataset and pretrained models)
├──── MNIST/ (MNIST dataset and pretrained models)

Environment requirements

It is recommended to use any of the following docker images to run the experiments.

pengchuanzhang/maskrcnn:ubuntu18-py3.7-cuda10.1-pytorch1.7 # recommended
pengchuanzhang/maskrcnn:py3.7-cuda10.0-pytorch1.7 # if you want to try the customized cuda kernel of vision longformer.

For virtual environments, the following packages should be the sufficient.

pytorch >= 1.5
tensorboardx, einops, timm, yacs==0.1.8

Evaluation scripts

Navigate to the src folder, run the following commands to evaluate the pre-trained models above.

Pretrained models of Vision Longformer

# tiny
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h1,d48,n1,s1,g1,p4,f7_l2,h3,d96,n1,s1,g1,p2,f7_l3,h3,d192,n9,s0,g1,p2,f7_l4,h6,d384,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/msvit_tiny_longformersw_1191_train/model_best.pth 
INFO:root:ACCURACY: 76.29600524902344%
INFO:root:iter: 0  max mem: 2236
    accuracy_metrics - top1: 76.2960 (76.2960)  top5: 93.2720 (93.2720)
    epoch_metrics    - total_cnt: 50000.0000 (50000.0000)  loss: 0.0040 (0.0040)  time: 0.0022 (0.0022)

# small
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n2,s1,g1,p2,f7_l3,h6,d384,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/msvit_small_longformersw_1281_train/model_best.pth 
INFO:root:ACCURACY: 81.97799682617188%
INFO:root:iter: 0  max mem: 6060
    accuracy_metrics - top1: 81.9780 (81.9780)  top5: 95.7880 (95.7880)
    epoch_metrics    - total_cnt: 50000.0000 (50000.0000)  loss: 0.0031 (0.0031)  time: 0.0029 (0.0029)

# medium-deep
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n4,s1,g1,p2,f7_l3,h6,d384,n16,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/deepmedium_14161_lr8e-4/model_best.pth

# medium-wide
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h3,d192,n1,s1,g1,p4,f7_l2,h6,d384,n2,s1,g1,p2,f7_l3,h8,d512,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/wide_medium_1281/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned medium-deep
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n4,s1,g1,p2,f7_l3,h6,d384,n16,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitdeepmedium_imagenet384_finetune_bsz256_lr001_wd0/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned medium-wide
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.ARCH 'l1,h3,d192,n1,s1,g1,p4,f8_l2,h6,d384,n2,s1,g1,p2,f12_l3,h8,d512,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitwidemedium_imagenet384_finetune_bsz512_lr004_wd0/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned base-deep
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.LN_EPS 1e-5 MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f6_l2,h3,d192,n8,s1,g1,p2,f8_l3,h6,d384,n24,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitdeepbase_imagenet384_finetune_bsz640_lr003_wd0/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned base-wide
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.ARCH 'l1,h3,d192,n1,s1,g1,p4,f8_l2,h6,d384,n2,s1,g1,p2,f8_l3,h12,d768,n8,s0,g1,p2,f7_l4,h16,d1024,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitwidebase_imagenet384_finetune_bsz768_lr001_wd1e-7/model_best.pth DATALOADER.BSZ 64

Pretrained models of other attention mechanisms

# Small full attention
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE full MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n2,s1,g1,p2,f7_l3,h6,d384,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/fullMSA/small1281/model_best.pth

# Small linformer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE linformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s1,g1,p2,f256_l4,h12,d768,n1,s1,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/linformer/small1281_full/model_best.pth

# Small partial linformer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE linformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s0,g1,p2,f256_l4,h12,d768,n1,s0,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/linformer/small1281_partial/model_best.pth

# Small global attention
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.AVG_POOL True MODEL.VIT.MSVIT.ONLY_GLOBAL True MODEL.VIT.MSVIT.ATTN_TYPE longformerhand MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g256,p4,f7_l2,h3,d192,n2,s1,g256,p2,f7_l3,h6,d384,n8,s1,g64,p2,f7_l4,h12,d768,n1,s1,g16,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/globalformer/globalfull1281/model_best.pth

# Small partial global attention
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.AVG_POOL True MODEL.VIT.MSVIT.ONLY_GLOBAL True MODEL.VIT.MSVIT.ATTN_TYPE longformerhand MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g256,p4,f7_l2,h3,d192,n2,s1,g256,p2,f7_l3,h6,d384,n8,s0,g1,p2,f7_l4,h6,d384,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/globalformer/globalpartial1281/model_best.pth

# Small spatial reduction attention with down-sample ratio 64
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE srformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f16_l2,h3,d192,n2,s1,g1,p2,f8_l3,h6,d384,n8,s1,g1,p2,f4_l4,h12,d768,n1,s1,g0,p2,f2' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/srformer/srformerfull1281/model_best.pth

# Small spatial reduction attention with down-sample ratio 32
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE srformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f8_l2,h3,d192,n2,s1,g1,p2,f4_l3,h6,d384,n8,s1,g1,p2,f2_l4,h12,d768,n1,s0,g0,p2,f1' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/srformer/srformerfull8_1281/model_best.pth

# Small partial spatial reduction attention with down-sample ratio 32
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE srformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f8_l2,h3,d192,n2,s1,g1,p2,f4_l3,h6,d384,n8,s0,g1,p2,f2_l4,h12,d768,n1,s0,g0,p2,f1' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/srformer/srformerpartial1281/model_best.pth

# Small performer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE performer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s1,g1,p2,f256_l4,h12,d768,n1,s1,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/performer/fullperformer1281/model_best.pth

# Small partial performer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE performer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s0,g1,p2,f256_l4,h12,d768,n1,s0,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/performer/partialperformer1281/model_best.pth

Training scripts

We provide three example training scripts as below.

# ViL-Tiny with relative positional embedding: Imagenet1K training with 224x224 resolution
python -m torch.distributed.launch --nproc_per_node=4 run_experiment.py --config-file
    'config/msvit.yaml' --data '../datasets/imagenet/2012/' OPTIM.OPT adamw
    OPTIM.LR 1e-3 OPTIM.WD 0.1 DATALOADER.BSZ 1024 MODEL.VIT.MSVIT.ATTN_TYPE
    longformerhand OPTIM.EPOCHS 300 SOLVER.LR_POLICY cosine INPUT.IMAGE_SIZE 224 MODEL.VIT.MSVIT.ARCH
    "l1,h1,d48,n1,s1,g1,p4,f7,a0_l2,h3,d96,n2,s1,g1,p2,f7,a0_l3,h3,d192,n8,s0,g1,p2,f7,a0_l4,h6,d384,n1,s0,g0,p2,f7,a0"
    AUG.REPEATED_AUG False

# Training with random shifting strategy: accelerate the training significantly
python -m torch.distributed.launch --nproc_per_node=4 run_experiment.py --config-file
    'config/msvit.yaml' --data '../datasets/imagenet/2012/' OPTIM.OPT adamw
    OPTIM.LR 1e-3 OPTIM.WD 0.1 DATALOADER.BSZ 1024 MODEL.VIT.MSVIT.ATTN_TYPE
    longformerhand OPTIM.EPOCHS 300 SOLVER.LR_POLICY cosine INPUT.IMAGE_SIZE 224 MODEL.VIT.MSVIT.ARCH
    "l1,h1,d48,n1,s1,g1,p4,f7,a0_l2,h3,d96,n2,s1,g1,p2,f7,a0_l3,h3,d192,n8,s0,g1,p2,f7,a0_l4,h6,d384,n1,s0,g0,p2,f7,a0"
    AUG.REPEATED_AUG False MODEL.VIT.MSVIT.MODE 1 MODEL.VIT.MSVIT.VIL_MODE_SWITCH 0.875

# ViL-Medium-Deep: Imagenet1K finetuning with 384x384 resolution
python -m torch.distributed.launch --nproc_per_node=8 run_experiment.py --config-file
    'config/msvit_384finetune.yaml' --data '/mnt/default/data/sasa/imagenet/2012/'
    OPTIM.OPT qhm OPTIM.LR 0.01 OPTIM.WD 0.0 DATALOADER.BSZ 256 MODEL.VIT.MSVIT.ATTN_TYPE
    longformerhand OPTIM.EPOCHS 10 SOLVER.LR_POLICY cosine INPUT.IMAGE_SIZE 384 MODEL.VIT.MSVIT.ARCH
    "l1,h3,d96,n1,s1,g1,p4,f8_l2,h3,d192,n4,s1,g1,p2,f12_l3,h6,d384,n16,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7"
    MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN22kpretrained/deepmedium/model_best.pth

Cite Vision Longformer

Please consider citing vision longformer if it helps your work.

@article{zhang2021multi,
  title={Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding},
  author={Zhang, Pengchuan and Dai, Xiyang and Yang, Jianwei and Xiao, Bin and Yuan, Lu and Zhang, Lei and Gao, Jianfeng},
  journal={arXiv preprint arXiv:2103.15358},
  year={2021}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
Official code for "Distributed Deep Learning in Open Collaborations" (NeurIPS 2021)

Distributed Deep Learning in Open Collaborations This repository contains the code for the NeurIPS 2021 paper "Distributed Deep Learning in Open Colla

Yandex Research 96 Sep 15, 2022
Code for ACL 2019 Paper: "COMET: Commonsense Transformers for Automatic Knowledge Graph Construction"

To run a generation experiment (either conceptnet or atomic), follow these instructions: First Steps First clone, the repo: git clone https://github.c

Antoine Bosselut 575 Jan 01, 2023
Saliency - Framework-agnostic implementation for state-of-the-art saliency methods (XRAI, BlurIG, SmoothGrad, and more).

Saliency Methods 🔴 Now framework-agnostic! (Example core notebook) 🔴 🔗 For further explanation of the methods and more examples of the resulting ma

PAIR code 849 Dec 27, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Scheme for training and applying a label propagation framework

Factorisation-based Image Labelling Overview This is a scheme for training and applying the factorisation-based image labelling (FIL) framework. Some

Wellcome Centre for Human Neuroimaging 2 Dec 17, 2021
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
Algorithmic trading using machine learning.

Algorithmic Trading This machine learning algorithm was built using Python 3 and scikit-learn with a Decision Tree Classifier. The program gathers sto

Sourav Biswas 101 Nov 10, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.

#NeuralTalk Warning: Deprecated. Hi there, this code is now quite old and inefficient, and now deprecated. I am leaving it on Github for educational p

Andrej 5.3k Jan 07, 2023
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Ludwig is a toolbox that allows to train and evaluate deep learning models without the need to write code.

Translated in 🇰🇷 Korean/ Ludwig is a toolbox that allows users to train and test deep learning models without the need to write code. It is built on

Ludwig 8.7k Dec 31, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022