Tilted Empirical Risk Minimization (ICLR '21)

Overview

Tilted Empirical Risk Minimization

This repository contains the implementation for the paper

Tilted Empirical Risk Minimization

ICLR 2021

Empirical risk minimization (ERM) is typically designed to perform well on the average loss, which can result in estimators that are sensitive to outliers, generalize poorly, or treat subgroups unfairly. While many methods aim to address these problems individually, in this work, we explore them through a unified framework---tilted empirical risk minimization (TERM).

This repository contains the data, code, and experiments to reproduce our empirical results. We demonstrate that TERM can be used for a multitude of applications, such as enforcing fairness between subgroups, mitigating the effect of outliers, and handling class imbalance. TERM is not only competitive with existing solutions tailored to these individual problems, but can also enable entirely new applications, such as simultaneously addressing outliers and promoting fairness.

Getting started

Dependencies

As we apply TERM to a diverse set of real-world applications, the dependencies for different applications can be different.

  • if we mention that the code is based on other public codebases, then one needs to follow the same setup of those codebases.
  • otherwise, need the following dependencies (the latest versions will work):
    • python3
    • sklearn
    • numpy
    • matplotlib
    • colorsys
    • seaborn
    • scipy
    • cvxpy (optional)

Properties of TERM

Motivating examples

These figures illustrate TERM as a function of t: (a) finding a point estimate from a set of 2D samples, (b) linear regression with outliers, and (c) logistic regression with imbalanced classes. While positive values of t magnify outliers, negative values suppress them. Setting t=0 recovers the original ERM objective.

(How to generate these figures: cd TERM/toy_example & jupyter notebook , and directly run the three notebooks.)

A toy problem to visualize the solutions to TERM

TERM objectives for a squared loss problem with N=3. As t moves from - to +, t-tilted losses recover min-loss (t-->+), avg-loss (t=0), and max-loss (t-->+), and approximate median-loss (for some t). TERM is smooth for all finite t and convex for positive t.

(How to generate this figure: cd TERM/properties & jupyter notebook , and directly run the notebook.)

How to run the code for different applications

1. Robust regression

cd TERM/robust_regression
python regression.py --obj $OBJ --corrupt 1 --noise $NOISE

where $OBJ is the objective and $NOISE is the noise level (see code for options).

2. Robust classification

cd TERM/robust_classification

3. Mitigating noisy annotators

cd TERM/noisy_annotator/pytorch_resnet_cifar10
python trainer.py --t -2  # TERM

4. Fair PCA

cd TERM/fair_pca
jupyter notebook

and directly run the notebook fair_pca_credit.ipynb.

  • built upon the public fair pca codebase
  • we directly extract the pre-processed Credit data dumped from the original matlab code, which are called data.csv, A.csv, and B.csv saved under TERM/fair_pca/multi-criteria-dimensionality-reduction-master/data/credit/.
  • dependencies: same as the fair pca code

5. Handling class imbalance

cd TERM/class_imbalance
python3 -m mnist.mnist_train_tilting --exp tilting  # TERM, common class=99.5%

6. Variance reduction for generalization

cd TERM/DRO
python variance_reduction.py --obj $OBJ $OTHER_PARAS  

where $OBJ is the objective, and $OTHER_PARAS$ are the hyperparameters associated with the objective (see code for options). We report how we select the hyperparameters along with all hyperparameter values in Appendix E of the paper. For instance, for TERM with t=50, run the following:

python variance_reduction.py --obj tilting --t 50  

7. Fair federated learning

cd TERM/fair_flearn
bash run.sh tilting 0 0 term_t0.1_seed0 > term_t0.1_seed0 2>&1 &

8. Hierarchical multi-objective tilting

cd TERM/hierarchical
python mixed_level1.py --imbalance 1 --corrupt 1 --obj tilting --t_in -2 --t_out 10  # TERM_sc
python mixed_level2.py --imbalance 1 --corrupt 1 --obj tilting --t_in 50 --t_out -2 # TERM_ca
  • mixed_level1.py: TERM_{sc}: (sample level, class level)
  • mixed_level2.py: TERM_{ca}: (class level, annotator level)

References

Please see the paper for more details of TERM as well as a complete list of related work.

Owner
Tian Li
Tian Li
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

lokaman chendekar 35 Nov 25, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
The implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021

DynamicNeuralGarments Introduction This repository contains the implemetation of Dynamic Nerual Garments proposed in Siggraph Asia 2021. ./GarmentMoti

42 Dec 27, 2022
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
Official implementation of "Generating 3D Molecules for Target Protein Binding"

Generating 3D Molecules for Target Protein Binding This is the official implementation of the GraphBP method proposed in the following paper. Meng Liu

DIVE Lab, Texas A&M University 74 Dec 07, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
NER for Indian languages

CL-NERIL: A Cross-Lingual Model for NER in Indian Languages Code for the paper - https://arxiv.org/abs/2111.11815 Setup Setup a virtual environment Th

Akshara P 0 Nov 24, 2021
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
🚩🚩🚩

My CTF Challenges 2021 AIS3 Pre-exam / MyFirstCTF Name Category Keywords Difficulty β’Έβ“„β“‹β’Ύβ’Ή-①⑨ (MyFirstCTF Only) Reverse Baby β˜… Piano Reverse C#, .NET β˜…

6 Oct 28, 2021
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023