Tilted Empirical Risk Minimization (ICLR '21)

Overview

Tilted Empirical Risk Minimization

This repository contains the implementation for the paper

Tilted Empirical Risk Minimization

ICLR 2021

Empirical risk minimization (ERM) is typically designed to perform well on the average loss, which can result in estimators that are sensitive to outliers, generalize poorly, or treat subgroups unfairly. While many methods aim to address these problems individually, in this work, we explore them through a unified framework---tilted empirical risk minimization (TERM).

This repository contains the data, code, and experiments to reproduce our empirical results. We demonstrate that TERM can be used for a multitude of applications, such as enforcing fairness between subgroups, mitigating the effect of outliers, and handling class imbalance. TERM is not only competitive with existing solutions tailored to these individual problems, but can also enable entirely new applications, such as simultaneously addressing outliers and promoting fairness.

Getting started

Dependencies

As we apply TERM to a diverse set of real-world applications, the dependencies for different applications can be different.

  • if we mention that the code is based on other public codebases, then one needs to follow the same setup of those codebases.
  • otherwise, need the following dependencies (the latest versions will work):
    • python3
    • sklearn
    • numpy
    • matplotlib
    • colorsys
    • seaborn
    • scipy
    • cvxpy (optional)

Properties of TERM

Motivating examples

These figures illustrate TERM as a function of t: (a) finding a point estimate from a set of 2D samples, (b) linear regression with outliers, and (c) logistic regression with imbalanced classes. While positive values of t magnify outliers, negative values suppress them. Setting t=0 recovers the original ERM objective.

(How to generate these figures: cd TERM/toy_example & jupyter notebook , and directly run the three notebooks.)

A toy problem to visualize the solutions to TERM

TERM objectives for a squared loss problem with N=3. As t moves from - to +, t-tilted losses recover min-loss (t-->+), avg-loss (t=0), and max-loss (t-->+), and approximate median-loss (for some t). TERM is smooth for all finite t and convex for positive t.

(How to generate this figure: cd TERM/properties & jupyter notebook , and directly run the notebook.)

How to run the code for different applications

1. Robust regression

cd TERM/robust_regression
python regression.py --obj $OBJ --corrupt 1 --noise $NOISE

where $OBJ is the objective and $NOISE is the noise level (see code for options).

2. Robust classification

cd TERM/robust_classification

3. Mitigating noisy annotators

cd TERM/noisy_annotator/pytorch_resnet_cifar10
python trainer.py --t -2  # TERM

4. Fair PCA

cd TERM/fair_pca
jupyter notebook

and directly run the notebook fair_pca_credit.ipynb.

  • built upon the public fair pca codebase
  • we directly extract the pre-processed Credit data dumped from the original matlab code, which are called data.csv, A.csv, and B.csv saved under TERM/fair_pca/multi-criteria-dimensionality-reduction-master/data/credit/.
  • dependencies: same as the fair pca code

5. Handling class imbalance

cd TERM/class_imbalance
python3 -m mnist.mnist_train_tilting --exp tilting  # TERM, common class=99.5%

6. Variance reduction for generalization

cd TERM/DRO
python variance_reduction.py --obj $OBJ $OTHER_PARAS  

where $OBJ is the objective, and $OTHER_PARAS$ are the hyperparameters associated with the objective (see code for options). We report how we select the hyperparameters along with all hyperparameter values in Appendix E of the paper. For instance, for TERM with t=50, run the following:

python variance_reduction.py --obj tilting --t 50  

7. Fair federated learning

cd TERM/fair_flearn
bash run.sh tilting 0 0 term_t0.1_seed0 > term_t0.1_seed0 2>&1 &

8. Hierarchical multi-objective tilting

cd TERM/hierarchical
python mixed_level1.py --imbalance 1 --corrupt 1 --obj tilting --t_in -2 --t_out 10  # TERM_sc
python mixed_level2.py --imbalance 1 --corrupt 1 --obj tilting --t_in 50 --t_out -2 # TERM_ca
  • mixed_level1.py: TERM_{sc}: (sample level, class level)
  • mixed_level2.py: TERM_{ca}: (class level, annotator level)

References

Please see the paper for more details of TERM as well as a complete list of related work.

Owner
Tian Li
Tian Li
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Official code for paper "Demystifying Local Vision Transformer: Sparse Connectivity, Weight Sharing, and Dynamic Weight"

Demysitifing Local Vision Transformer, arxiv This is the official PyTorch implementation of our paper. We simply replace local self attention by (dyna

138 Dec 28, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
An open-source outlier detection package by Getcontact Data Team

pyfbad The pyfbad library supports anomaly detection projects. An end-to-end anomaly detection application can be written using the source codes of th

Teknasyon Tech 41 Dec 27, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
A supplementary code for Editable Neural Networks, an ICLR 2020 submission.

Editable neural networks A supplementary code for Editable Neural Networks, an ICLR 2020 submission by Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Py

Anton Sinitsin 32 Nov 29, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
Human Pose estimation with TensorFlow framework

Human Pose Estimation with TensorFlow Here you can find the implementation of the Human Body Pose Estimation algorithm, presented in the DeeperCut and

Eldar Insafutdinov 1.1k Dec 29, 2022
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
[Nature Machine Intelligence' 21] "Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in Artificial Intelligence"

[UCADI] COVID-19 Diagnosis With Federated Learning Intro We developed a Federated Learning (FL) Framework for global researchers to collaboratively tr

HUST EIC AI-LAB 30 Dec 12, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022