Distance-Ratio-Based Formulation for Metric Learning

Overview

Distance-Ratio-Based Formulation for Metric Learning

Environment

Preparing datasets

CUB

  • Change directory to /filelists/CUB
  • run source ./download_CUB.sh

One might need to manually download CUB data from http://www.vision.caltech.edu/visipedia-data/CUB-200-2011/CUB_200_2011.tgz.

mini-ImageNet

  • Change directory to /filelists/miniImagenet
  • run source ./download_miniImagenet.sh (WARNING: This would download the 155G ImageNet dataset.)

To only download 'miniImageNet dataset' and not the whole 155G ImageNet dataset:

(Download 'csv' files from the codes in /filelists/miniImagenet/download_miniImagenet.sh. Then, do the following.)

First, download zip file from https://drive.google.com/file/d/0B3Irx3uQNoBMQ1FlNXJsZUdYWEE/view (It is from https://github.com/oscarknagg/few-shot). After unzipping the zip file at /filelists/miniImagenet, run a script /filelists/miniImagenet/prepare_mini_imagenet.py which is modified from https://github.com/oscarknagg/few-shot/blob/master/scripts/prepare_mini_imagenet.py. Then, run /filelists/miniImagenet/write_miniImagenet_filelist2.py.

Train

Run python ./train.py --dataset [DATASETNAME] --model [BACKBONENAME] --method [METHODNAME] --train_aug [--OPTIONARG]

To also save training analyses results, for example, run python ./train.py --dataset miniImagenet --model Conv4 --method protonet_S --train_aug --n_shot 5 --train_n_way 5 --test_n_way 5 > record/miniImagenet_Conv4_proto_S_5s5w.txt

train_models.ipynb contains codes for our experiments.

Save features

Save the extracted feature before the classifaction layer to increase test speed.

For instance, run python ./save_features.py --dataset miniImagenet --model Conv4 --method protonet_S --train_aug --n_shot 5 --train_n_way 5

Test

For example, run python ./test.py --dataset miniImagenet --model Conv4 --method protonet_S --train_aug --n_shot 5 --train_n_way 5 --test_n_way 5

Analyze training

Run /record/analyze_training_1shot.ipynb and /record/analyze_training_5shot.ipynb to analyze training results (norm ratio, con-alpha ratio, div-alpha ratio, and con-div ratio)

Results

The test results will be recorded in ./record/results.txt

Visual comparison of softmax-based and distance-ratio-based (DR) formulation

The following images visualize confidence scores of red class when the three points are the representing points of red, green, and blue classes.

Softmax-based formulation DR formulation

References and licence

Our repository (a set of codes) is forked from an original repository (https://github.com/wyharveychen/CloserLookFewShot) and codes are under the same licence (LICENSE.txt) as the original repository except for the following.

/filelists/miniImagenet/prepare_mini_imagenet.py file is modifed from https://github.com/oscarknagg/few-shot. It is under a different licence in /filelists/miniImagenet/prepare_mini_imagenet.LICENSE

Copyright and licence notes (including the copyright note in /data/additional_transforms.py) are from the original repositories (https://github.com/wyharveychen/CloserLookFewShot and https://github.com/oscarknagg/few-shot).

Modifications

List of modified or added files (or folders) compared to the original repository (https://github.com/wyharveychen/CloserLookFewShot):

io_utils.py backbone.py configs.py train.py save_features.py test.py utils.py README.md train_models.ipynb /methods/__init__.py /methods/protonet_S.py /methods/meta_template.py /methods/protonet_DR.py /methods/softmax_1nn.py /methods/DR_1nn.py /models/ /filelists/miniImagenet/prepare_mini_imagenet.py /filelists/miniImagenet/prepare_mini_imagenet.LICENSE /filelists/miniImagenet/write_miniImagenet_filelist2.py /record/ /record/preprocessed/ /record/analyze_training_1shot.ipynb /record/analyze_training_5shot.ipynb

My (Hyeongji Kim) main contributions (modifications) are in /methods/meta_template.py, /methods/protonet_DR.py, /methods/softmax_1nn.py, /methods/DR_1nn.py, /record/analyze_training_1shot.ipynb, and /record/analyze_training_5shot.ipynb.

Owner
Hyeongji Kim
Hyeongji Kim
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Few-Shot Object Detection via Association and DIscrimination

Few-Shot Object Detection via Association and DIscrimination Code release of our NeurIPS 2021 paper: Few-Shot Object Detection via Association and DIs

Cao Yuhang 49 Dec 18, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling

274 Dec 06, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다.

ObsCare_Main 소개 공공장소에서 눈만 돌리면 CCTV가 보인다는 말이 과언이 아닐 정도로 CCTV가 우리 생활에 깊숙이 자리 잡았습니다. CCTV의 대수가 급격히 늘어나면서 관리와 효율성 문제와 더불어, 곳곳에 설치된 CCTV를 개별 관제하는 것으로는 응급 상

5 Jul 07, 2022
Face recognize and crop them

Face Recognize Cropping Module Source 아이디어 Face Alignment with OpenCV and Python Requirement 필요 라이브러리 imutil dlib python-opence (cv2) Usage 사용 방법 open

Cho Moon Gi 1 Feb 15, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023
Prml - Repository of notes, code and notebooks in Python for the book Pattern Recognition and Machine Learning by Christopher Bishop

Pattern Recognition and Machine Learning (PRML) This project contains Jupyter notebooks of many the algorithms presented in Christopher Bishop's Patte

Gerardo Durán-Martín 1k Jan 07, 2023
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution

FAU Implementation of the paper: Facial Action Unit Intensity Estimation via Semantic Correspondence Learning with Dynamic Graph Convolution. Yingruo

Evelyn 78 Nov 29, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023