Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Overview

Semantic Segmentation on MIT ADE20K dataset in PyTorch

This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing dataset (http://sceneparsing.csail.mit.edu/).

ADE20K is the largest open source dataset for semantic segmentation and scene parsing, released by MIT Computer Vision team. Follow the link below to find the repository for our dataset and implementations on Caffe and Torch7: https://github.com/CSAILVision/sceneparsing

If you simply want to play with our demo, please try this link: http://scenesegmentation.csail.mit.edu You can upload your own photo and parse it!

You can also use this colab notebook playground here to tinker with the code for segmenting an image.

All pretrained models can be found at: http://sceneparsing.csail.mit.edu/model/pytorch

[From left to right: Test Image, Ground Truth, Predicted Result]

Color encoding of semantic categories can be found here: https://docs.google.com/spreadsheets/d/1se8YEtb2detS7OuPE86fXGyD269pMycAWe2mtKUj2W8/edit?usp=sharing

Updates

  • HRNet model is now supported.
  • We use configuration files to store most options which were in argument parser. The definitions of options are detailed in config/defaults.py.
  • We conform to Pytorch practice in data preprocessing (RGB [0, 1], substract mean, divide std).

Highlights

Syncronized Batch Normalization on PyTorch

This module computes the mean and standard-deviation across all devices during training. We empirically find that a reasonable large batch size is important for segmentation. We thank Jiayuan Mao for his kind contributions, please refer to Synchronized-BatchNorm-PyTorch for details.

The implementation is easy to use as:

  • It is pure-python, no C++ extra extension libs.
  • It is completely compatible with PyTorch's implementation. Specifically, it uses unbiased variance to update the moving average, and use sqrt(max(var, eps)) instead of sqrt(var + eps).
  • It is efficient, only 20% to 30% slower than UnsyncBN.

Dynamic scales of input for training with multiple GPUs

For the task of semantic segmentation, it is good to keep aspect ratio of images during training. So we re-implement the DataParallel module, and make it support distributing data to multiple GPUs in python dict, so that each gpu can process images of different sizes. At the same time, the dataloader also operates differently.

Now the batch size of a dataloader always equals to the number of GPUs, each element will be sent to a GPU. It is also compatible with multi-processing. Note that the file index for the multi-processing dataloader is stored on the master process, which is in contradict to our goal that each worker maintains its own file list. So we use a trick that although the master process still gives dataloader an index for __getitem__ function, we just ignore such request and send a random batch dict. Also, the multiple workers forked by the dataloader all have the same seed, you will find that multiple workers will yield exactly the same data, if we use the above-mentioned trick directly. Therefore, we add one line of code which sets the defaut seed for numpy.random before activating multiple worker in dataloader.

State-of-the-Art models

  • PSPNet is scene parsing network that aggregates global representation with Pyramid Pooling Module (PPM). It is the winner model of ILSVRC'16 MIT Scene Parsing Challenge. Please refer to https://arxiv.org/abs/1612.01105 for details.
  • UPerNet is a model based on Feature Pyramid Network (FPN) and Pyramid Pooling Module (PPM). It doesn't need dilated convolution, an operator that is time-and-memory consuming. Without bells and whistles, it is comparable or even better compared with PSPNet, while requiring much shorter training time and less GPU memory. Please refer to https://arxiv.org/abs/1807.10221 for details.
  • HRNet is a recently proposed model that retains high resolution representations throughout the model, without the traditional bottleneck design. It achieves the SOTA performance on a series of pixel labeling tasks. Please refer to https://arxiv.org/abs/1904.04514 for details.

Supported models

We split our models into encoder and decoder, where encoders are usually modified directly from classification networks, and decoders consist of final convolutions and upsampling. We have provided some pre-configured models in the config folder.

Encoder:

  • MobileNetV2dilated
  • ResNet18/ResNet18dilated
  • ResNet50/ResNet50dilated
  • ResNet101/ResNet101dilated
  • HRNetV2 (W48)

Decoder:

  • C1 (one convolution module)
  • C1_deepsup (C1 + deep supervision trick)
  • PPM (Pyramid Pooling Module, see PSPNet paper for details.)
  • PPM_deepsup (PPM + deep supervision trick)
  • UPerNet (Pyramid Pooling + FPN head, see UperNet for details.)

Performance:

IMPORTANT: The base ResNet in our repository is a customized (different from the one in torchvision). The base models will be automatically downloaded when needed.

Architecture MultiScale Testing Mean IoU Pixel Accuracy(%) Overall Score Inference Speed(fps)
MobileNetV2dilated + C1_deepsup No 34.84 75.75 54.07 17.2
Yes 33.84 76.80 55.32 10.3
MobileNetV2dilated + PPM_deepsup No 35.76 77.77 56.27 14.9
Yes 36.28 78.26 57.27 6.7
ResNet18dilated + C1_deepsup No 33.82 76.05 54.94 13.9
Yes 35.34 77.41 56.38 5.8
ResNet18dilated + PPM_deepsup No 38.00 78.64 58.32 11.7
Yes 38.81 79.29 59.05 4.2
ResNet50dilated + PPM_deepsup No 41.26 79.73 60.50 8.3
Yes 42.14 80.13 61.14 2.6
ResNet101dilated + PPM_deepsup No 42.19 80.59 61.39 6.8
Yes 42.53 80.91 61.72 2.0
UperNet50 No 40.44 79.80 60.12 8.4
Yes 41.55 80.23 60.89 2.9
UperNet101 No 42.00 80.79 61.40 7.8
Yes 42.66 81.01 61.84 2.3
HRNetV2 No 42.03 80.77 61.40 5.8
Yes 43.20 81.47 62.34 1.9

The training is benchmarked on a server with 8 NVIDIA Pascal Titan Xp GPUs (12GB GPU memory), the inference speed is benchmarked a single NVIDIA Pascal Titan Xp GPU, without visualization.

Environment

The code is developed under the following configurations.

  • Hardware: >=4 GPUs for training, >=1 GPU for testing (set [--gpus GPUS] accordingly)
  • Software: Ubuntu 16.04.3 LTS, CUDA>=8.0, Python>=3.5, PyTorch>=0.4.0
  • Dependencies: numpy, scipy, opencv, yacs, tqdm

Quick start: Test on an image using our trained model

  1. Here is a simple demo to do inference on a single image:
chmod +x demo_test.sh
./demo_test.sh

This script downloads a trained model (ResNet50dilated + PPM_deepsup) and a test image, runs the test script, and saves predicted segmentation (.png) to the working directory.

  1. To test on an image or a folder of images ($PATH_IMG), you can simply do the following:
python3 -u test.py --imgs $PATH_IMG --gpu $GPU --cfg $CFG

Training

  1. Download the ADE20K scene parsing dataset:
chmod +x download_ADE20K.sh
./download_ADE20K.sh
  1. Train a model by selecting the GPUs ($GPUS) and configuration file ($CFG) to use. During training, checkpoints by default are saved in folder ckpt.
python3 train.py --gpus $GPUS --cfg $CFG 
  • To choose which gpus to use, you can either do --gpus 0-7, or --gpus 0,2,4,6.

For example, you can start with our provided configurations:

  • Train MobileNetV2dilated + C1_deepsup
python3 train.py --gpus GPUS --cfg config/ade20k-mobilenetv2dilated-c1_deepsup.yaml
  • Train ResNet50dilated + PPM_deepsup
python3 train.py --gpus GPUS --cfg config/ade20k-resnet50dilated-ppm_deepsup.yaml
  • Train UPerNet101
python3 train.py --gpus GPUS --cfg config/ade20k-resnet101-upernet.yaml
  1. You can also override options in commandline, for example python3 train.py TRAIN.num_epoch 10 .

Evaluation

  1. Evaluate a trained model on the validation set. Add VAL.visualize True in argument to output visualizations as shown in teaser.

For example:

  • Evaluate MobileNetV2dilated + C1_deepsup
python3 eval_multipro.py --gpus GPUS --cfg config/ade20k-mobilenetv2dilated-c1_deepsup.yaml
  • Evaluate ResNet50dilated + PPM_deepsup
python3 eval_multipro.py --gpus GPUS --cfg config/ade20k-resnet50dilated-ppm_deepsup.yaml
  • Evaluate UPerNet101
python3 eval_multipro.py --gpus GPUS --cfg config/ade20k-resnet101-upernet.yaml

Integration with other projects

This library can be installed via pip to easily integrate with another codebase

pip install git+https://github.com/CSAILVision/[email protected]

Now this library can easily be consumed programmatically. For example

from mit_semseg.config import cfg
from mit_semseg.dataset import TestDataset
from mit_semseg.models import ModelBuilder, SegmentationModule

Reference

If you find the code or pre-trained models useful, please cite the following papers:

Semantic Understanding of Scenes through ADE20K Dataset. B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso and A. Torralba. International Journal on Computer Vision (IJCV), 2018. (https://arxiv.org/pdf/1608.05442.pdf)

@article{zhou2018semantic,
  title={Semantic understanding of scenes through the ade20k dataset},
  author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Xiao, Tete and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
  journal={International Journal on Computer Vision},
  year={2018}
}

Scene Parsing through ADE20K Dataset. B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso and A. Torralba. Computer Vision and Pattern Recognition (CVPR), 2017. (http://people.csail.mit.edu/bzhou/publication/scene-parse-camera-ready.pdf)

@inproceedings{zhou2017scene,
    title={Scene Parsing through ADE20K Dataset},
    author={Zhou, Bolei and Zhao, Hang and Puig, Xavier and Fidler, Sanja and Barriuso, Adela and Torralba, Antonio},
    booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
    year={2017}
}
A Tensorflow based library for Time Series Modelling with Gaussian Processes

Markovflow Documentation | Tutorials | API reference | Slack What does Markovflow do? Markovflow is a Python library for time-series analysis via prob

Secondmind Labs 24 Dec 12, 2022
Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images

Multimodal Co-Attention Transformer (MCAT) for Survival Prediction in Gigapixel Whole Slide Images [ICCV 2021] © Mahmood Lab - This code is made avail

Mahmood Lab @ Harvard/BWH 63 Dec 01, 2022
This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

1 Oct 25, 2021
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Keras community contributions

keras-contrib : Keras community contributions Keras-contrib is deprecated. Use TensorFlow Addons. The future of Keras-contrib: We're migrating to tens

Keras 1.6k Dec 21, 2022
Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds

Unsupervised 3D Human Mesh Recovery from Noisy Point Clouds Xinxin Zuo, Sen Wang, Minglun Gong, Li Cheng Prerequisites We have tested the code on Ubun

41 Dec 12, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch

This computer program provides a reference implementation of Lagrangian Monte Carlo in metric induced by the Monge patch. The code was prepared to the final version of the accepted manuscript in AIST

Marcelo Hartmann 2 May 06, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
The official implementation of CircleNet: Anchor-free Detection with Circle Representation, MICCAI 2030

CircleNet: Anchor-free Detection with Circle Representation The official implementation of CircleNet, MICCAI 2020 [PyTorch] [project page] [MICCAI pap

The Biomedical Data Representation and Learning Lab 45 Nov 18, 2022