Language-Agnostic Website Embedding and Classification

Overview

Homepage2Vec

Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf


Homepage2Vec is a pre-trained model that supports the classification and embedding of websites starting from their homepage.

Left: Projection in two dimensions with t-SNE of the embedding of 5K random samples of the testing set. Colors represent the 14 classes. Right: The projection with t-SNE of some popular websites shows that embedding vectors effectively capture website topics.

Curated Curlie Dataset

We release the full training dataset obtained from Curlie. The dataset includes the websites (online in April 2021) with the URL recognized as homepage, and it contains the original labels, the labels aligned to English, and the fetched HTML pages.

Get it here: https://doi.org/10.6084/m9.figshare.16621669

Getting started with the library

Installation:

Step 1: install the library with pip.

pip install homepage2vec

Usage:

import logging
from homepage2vec.model import WebsiteClassifier

logging.getLogger().setLevel(logging.DEBUG)

model = WebsiteClassifier()

website = model.fetch_website('epfl.ch')

scores, embeddings = model.predict(website)

print("Classes probabilities:", scores)
print("Embedding:", embeddings)

Result:

Classes probabilities: {'Arts': 0.3674524128437042, 'Business': 0.0720655769109726,
 'Computers': 0.03488553315401077, 'Games': 7.529282356699696e-06, 
 'Health': 0.02021787129342556, 'Home': 0.0005890956381335855, 
 'Kids_and_Teens': 0.3113572597503662, 'News': 0.0079914266243577, 
 'Recreation': 0.00835705827921629, 'Reference': 0.931416392326355, 
 'Science': 0.959597110748291, 'Shopping': 0.0010162043618038297, 
 'Society': 0.23374591767787933, 'Sports': 0.00014659571752417833}
 
Embedding: [-4.596550941467285, 1.0690114498138428, 2.1633379459381104,
 0.1665923148393631, -4.605356216430664, -2.894961357116699, 0.5615459084510803, 
 1.6420538425445557, -1.918184757232666, 1.227172613143921, 0.4358430504798889, 
 ...]

The library automatically downloads the pre-trained models homepage2vec and XLM-R at the first usage.

Using visual features

If you wish to use the prediction using the visual features, Homepage2vec needs to take a screenshot of the website. This means you need a working copy of Selenium and the Chrome browser. Please note that as reported in the reference paper, the performance improvement is limited.

Install the Selenium Chrome web driver, and add the folder to the system $PATH variable. You need a local copy of Chrome browser (See Getting started).

Getting involved

We invite contributions to Homepage2Vec! Please open a pull request if you have any suggestions.

Original publication

Language-Agnostic Website Embedding and Classification

Sylvain Lugeon, Tiziano Piccardi, Robert West

Currently, publicly available models for website classification do not offer an embedding method and have limited support for languages beyond English. We release a dataset with more than 1M websites in 92 languages with relative labels collected from Curlie, the largest multilingual crowdsourced Web directory. The dataset contains 14 website categories aligned across languages. Alongside it, we introduce Homepage2Vec, a machine-learned pre-trained model for classifying and embedding websites based on their homepage in a language-agnostic way. Homepage2Vec, thanks to its feature set (textual content, metadata tags, and visual attributes) and recent progress in natural language representation, is language-independent by design and can generate embeddings representation. We show that Homepage2Vec correctly classifies websites with a macro-averaged F1-score of 0.90, with stable performance across low- as well as high-resource languages. Feature analysis shows that a small subset of efficiently computable features suffices to achieve high performance even with limited computational resources.

https://arxiv.org/pdf/2201.03677.pdf

Dataset License

Creative Commons Attribution 3.0 Unported License - Curlie

Learn more how to contribute: https://curlie.org/docs/en/about.html

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

OpenAI 2.9k Jan 04, 2023
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Convnext-tf - Unofficial tensorflow keras implementation of ConvNeXt

ConvNeXt Tensorflow This is unofficial tensorflow keras implementation of ConvNe

29 Oct 06, 2022
Tensorflow implementation for Self-supervised Graph Learning for Recommendation

If the compilation is successful, the evaluator of cpp implementation will be called automatically. Otherwise, the evaluator of python implementation will be called.

152 Jan 07, 2023
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

VITA lab at EPFL 125 Dec 23, 2022
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
DC540 hacking challenge 0x00005a.

dc540-0x00005a DC540 hacking challenge 0x00005a. PROMOTIONAL VIDEO - WATCH NOW HERE ON YOUTUBE CRITICAL PART 5A VIDEO - WATCH NOW HERE ON YOUTUBE Prio

Kevin Thomas 3 May 09, 2022
[ICML 2021] “ Self-Damaging Contrastive Learning”, Ziyu Jiang, Tianlong Chen, Bobak Mortazavi, Zhangyang Wang

Self-Damaging Contrastive Learning Introduction The recent breakthrough achieved by contrastive learning accelerates the pace for deploying unsupervis

VITA 51 Dec 29, 2022
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
Roger Labbe 13k Dec 29, 2022
1st-in-MICCAI2020-CPM - Combined Radiology and Pathology Classification

Combined Radiology and Pathology Classification MICCAI 2020 Combined Radiology a

22 Dec 08, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Applying PVT to Semantic Segmentation

Applying PVT to Semantic Segmentation Here, we take MMSegmentation v0.13.0 as an example, applying PVTv2 to SemanticFPN. For details see Pyramid Visio

35 Nov 30, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022