Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Overview

Keras-FCN

Fully convolutional networks and semantic segmentation with Keras.

Biker Image

Biker Ground Truth

Biker as classified by AtrousFCN_Resnet50_16s

Models

Models are found in models.py, and include ResNet and DenseNet based models. AtrousFCN_Resnet50_16s is the current best performer, with pixel mean Intersection over Union mIoU 0.661076, and pixel accuracy around 0.9 on the augmented Pascal VOC2012 dataset detailed below.

Install

Useful setup scripts for Ubuntu 14.04 and 16.04 can be found in the robotics_setup repository. First use that to install CUDA, TensorFlow,

mkdir -p ~/src

cd ~/src
# install dependencies
pip install pillow keras sacred

# fork of keras-contrib necessary for DenseNet based models
git clone [email protected]:ahundt/keras-contrib.git -b densenet-atrous
cd keras-contrib
sudo python setup.py install


# Install python coco tools
cd ~/src
git clone https://github.com/pdollar/coco.git
cd coco
sudo python setup.py install

cd ~/src
git clone https://github.com/aurora95/Keras-FCN.git

Datasets

Datasets can be downloaded and configured in an automated fashion via the ahundt-keras branch on a fork of the tf_image_segmentation repository.

For simplicity, the instructions below assume all repositories are in ~/src/, and datasets are downloaded to ~/.keras/ by default.

cd ~/src
git clone [email protected]:ahundt/tf-image-segmentation.git -b Keras-FCN

Pascal VOC + Berkeley Data Augmentation

Pascal VOC 2012 augmented with Berkeley Semantic Contours is the primary dataset used for training Keras-FCN. Note that the default configuration maximizes the size of the dataset, and will not in a form that can be submitted to the pascal VOC2012 segmentation results leader board, details are below.

# Automated Pascal VOC Setup (recommended)
export PYTHONPATH=$PYTHONPATH:~/src/tf-image-segmentation
cd path/to/tf-image-segmentation/tf_image_segmentation/recipes/pascal_voc/
python data_pascal_voc.py pascal_voc_setup

This downloads and configures image/annotation filenames pairs train/val splits from combined Pascal VOC with train and validation split respectively that has image full filename/ annotation full filename pairs in each of the that were derived from PASCAL and PASCAL Berkeley Augmented dataset.

The datasets can be downloaded manually as follows:

# Manual Pascal VOC Download (not required)

    # original PASCAL VOC 2012
    wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar # 2 GB
    # berkeley augmented Pascal VOC
    wget http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/semantic_contours/benchmark.tgz # 1.3 GB

The setup utility has three type of train/val splits(credit matconvnet-fcn):

Let BT, BV, PT, PV, and PX be the Berkeley training and validation
sets and PASCAL segmentation challenge training, validation, and
test sets. Let T, V, X the final trainig, validation, and test
sets.
Mode 1::
      V = PV (same validation set as PASCAL)
Mode 2:: (default))
      V = PV \ BT (PASCAL val set that is not a Berkeley training
      image)
Mode 3::
      V = PV \ (BV + BT)
In all cases:
      S = PT + PV + BT + BV
      X = PX  (the test set is uncahgend)
      T = (S \ V) \ X (the rest is training material)

MS COCO

MS COCO support is very experimental, contributions would be highly appreciated.

Note that there any pixel can have multiple classes, for example a pixel which is point on a cup on a table will be classified as both cup and table, but sometimes the z-ordering is wrong in the dataset. This means saving the classes as an image will result in very poor performance.

export PYTHONPATH=$PYTHONPATH:~/src/tf-image-segmentation
cd ~/src/tf-image-segmentation/tf_image_segmentation/recipes/mscoco

# Initial download is 13 GB
# Extracted 91 class segmentation encoding
# npy matrix files may require up to 1TB

python data_coco.py coco_setup
python data_coco.py coco_to_pascal_voc_imageset_txt
python data_coco.py coco_image_segmentation_stats

# Train on coco
cd ~/src/Keras-FCN
python train_coco.py

Training and testing

The default configuration trains and evaluates AtrousFCN_Resnet50_16s on pascal voc 2012 with berkeley data augmentation.

cd ~/src/Keras-FCN
cd utils

# Generate pretrained weights
python transfer_FCN.py

cd ~/src/Keras-FCN

# Run training
python train.py

# Evaluate the performance of the network
python evaluate.py

Model weights will be in ~/src/Keras-FCN/Models, along with saved image segmentation results from the validation dataset.

Key files

  • model.py
    • contains model definitions, you can use existing models or you can define your own one.
  • train.py
    • The training script. Most parameters are set in the main function, and data augmentation parameters are where SegDataGenerator is initialized, you may change them according to your needs.
  • inference.py
    • Used for infering segmentation results. It can be directly run and it's also called in evaluate.py
  • evaluate.py
    • Used for evaluating perforance. It will save all segmentation results as images and calculate IOU. Outputs are not perfectly formatted so you may need to look into the code to see the meaning.

Most parameters of train.py, inference.py, and evaluate.py are set in the main function.

Owner
Computer Vision/Quant Investment
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges for the practitioner

Sparse network learning with snlpy Very large and sparse networks appear often in the wild and present unique algorithmic opportunities and challenges

Andrew Stolman 1 Apr 30, 2021
(Arxiv 2021) NeRF--: Neural Radiance Fields Without Known Camera Parameters

NeRF--: Neural Radiance Fields Without Known Camera Parameters Project Page | Arxiv | Colab Notebook | Data Zirui Wang¹, Shangzhe Wu², Weidi Xie², Min

Active Vision Laboratory 411 Dec 26, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
YOLOv2 in PyTorch

YOLOv2 in PyTorch NOTE: This project is no longer maintained and may not compatible with the newest pytorch (after 0.4.0). This is a PyTorch implement

Long Chen 1.5k Jan 02, 2023
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
Implements an infinite sum of poisson-weighted convolutions

An infinite sum of Poisson-weighted convolutions Kyle Cranmer, Aug 2018 If viewing on GitHub, this looks better with nbviewer: click here Consider a v

Kyle Cranmer 26 Dec 07, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
HIVE: Evaluating the Human Interpretability of Visual Explanations

HIVE: Evaluating the Human Interpretability of Visual Explanations Project Page | Paper This repo provides the code for HIVE, a human evaluation frame

Princeton Visual AI Lab 16 Dec 13, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Collie do

ShopRunner 96 Dec 29, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023