[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

Overview

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax

License: MIT Python 3.8 Pytorch 1.9 arXiv Open in Visual Studio Code

Summary

Introduction

The new attention operator (for the encoder) is simply Q(K^TV), or the quadratic complexity one (QK^T)V.

  • No softmax, or the approximation thereof, at all.
  • Whichever two latent representations doing matmul get the layer normalization, similar to Gram-Schmidt process where we have to divide the basis's norm squared. Q, K get layer normalized in the Fourier-type attention (every position attends with every other), as for K, V in the Galerkin-type attention (every basis attends with every other basis). No layer normalization is applied afterward.
  • Some other components are tweaked according to our Hilbertian interpretation of attention.

Overall this is called a scale-preserving simple attention. For the full operator learner, the feature extractor is a simple linear layer or an interpolation-based CNN, the decoder is the spectral convolution real parameter re-implementation from the best operator learner to-date Fourier Neural Operator (FNO) in Li et al 2020 if the target is smooth, or just a pointwise FFN if otherwise. The resulting network is extremely powerful in learning PDE-related operators (energy decay, inverse coefficient identification).

Hilbertian framework to analyze linear attention

Even though everyone is Transformer'ing, the mathematics behind the attention mechanism is not well understood. We have also shown that the Galerkin-type attention (a linear attention without softmax) has an approximation capacity on par with a Petrov-Galerkin projection under a Hilbertian setup. We use a method commonly known as ''mixed method'' in the finite element analysis community that is used to solve fluid/electromagnetics problems. Unlike finite element methods, in an attention-based operator learner the approximation is not discretization-tied, in that:

  1. The latent representation is interpreted "column-wise" (each column represents a basis), opposed to the conventional "row-wise"/ "position-wise"/"word-wise" interpretation of attention in NLP.
  2. The dimensions of the approximation spaces are not tied to the geometry as in the traditional finite element analysis (or finite difference, spectral methods, radial basis, etc.);
  3. The approximation spaces are being dynamically updated by the nonlinear universal approximator due to the presence of the positional encodings, which determines the topology of the approximation space.

For details please refer to: https://arxiv.org/abs/2105.14995

@Misc{Cao:2021transformer,
  author        = {Shuhao Cao},
  title         = {Choose a Transformer: Fourier or Galerkin},
  year          = {2021},
  archiveprefix = {arXiv},
  eprint        = {2105.14995},
  primaryclass  = {cs.CL},
  url           = {https://arxiv.org/abs/2105.14995},
}

Install

Requirements

(Updated Jun 17 2021) PyTorch requirement updated to 1.9.0 as the introduction of the batch_first argument will conform with our pipeline.

This package can be cloned locally and used with the following requirements:

git clone https://github.com/scaomath/galerkin-transformer.git
cd galerkin-transformer
python3 -m pip install -r requirements.txt
seaborn==0.11.1
torchinfo==0.0.8
numpy==1.20.2
torch==1.9.0
plotly==4.14.3
scipy==1.6.2
psutil==5.8.0
matplotlib==3.3.4
tqdm==4.56.0
PyYAML==5.4.1

If interactive mode is to be used, please install

jupyterthemes==0.20.0
ipython==7.23.1

Installing using pip

This package can be installed using pip.

python3 -m pip install galerkin-transformer

Example usage of the Simple Fourier/Galerkin Transformer encoder layers:

from galerkin_transformer.model import *

encoder_layer = FourierTransformerEncoderLayer(
                 d_model=128,
                 pos_dim=1,
                 n_head=4,
                 dim_feedforward=512,
                 attention_type='galerkin',
                 layer_norm=False,
                 attn_norm=True,
                 norm_type='layer',
                 dropout=0.05)
encoder_layers = nn.ModuleList([copy.deepcopy(encoder_layer) for _ in range(6)])
x = torch.randn(8, 8192, 128) # embedding
pos = torch.arange(0, 8192).unsqueeze(-1) # Euclidean coordinates
pos = pos.repeat(8, 1, 1)
for layer in encoder_layers:
    x = layer(x, pos)

Data

The data is courtesy of Zongyi Li (Caltech) under the MIT license. Download the following data from here:

burgers_data_R10.mat
piececonst_r421_N1024_smooth1.mat
piececonst_r421_N1024_smooth2.mat.

The repo has a semi env variable $DATA_PATH set in utils_ft.py, if you have a global system environ variable name DATA_PATH, then please put the data in that folder. Otherwise, please unzip the Burgers and Darcy flow problem files to the ./data folder.

Examples

All examples are learning PDE-related operators. The setting can be found in config.yml. To fully reproducing our result, please refer to the training scripts for all the possible args.

By default the evaluation is performed on the last 100 samples in the test dataset like the code in FNO repo. All trainers are using the 1cycle scheduler in PyTorch for 100 epochs. Every example has a --seed $SEED argument and the default seed is 1127802. Again if you have a system wide env variable named SEED, the code will use that seed instead.

A caveat for Darcy problems

Since nn.functional.interpolate is used in Darcy examples, a fixed seed may still yield different results each training cycle on GPU according to PyTorch documents, but we have verified that the variance is negligible. Some example set-ups are as follows.

Example 1: Burgers equation

net

The baseline benchmark ex1_burgers.py: evaluation relative error is about 1e-3 with a simple pointwise forward expansion feature extractor. The input is the initial condition of a viscous Burgers' equation on a discrete grid, the output is an approximation to the solution marched to time $1$. The initial data are generating using a GRF and the data in the validation set are not in the train set.

Default benchmark on a 2048 grid using a Fourier Transformer, with 4 Fourier-type attention encoder layers as the encoder and 2 spectral convolution layers from Li et al 2020 as the decoder (to reduce the overfit we decrease the dmodel of the spectral conv from the original 64 to 48):

python ex1_burgers.py

For more choices of arguments, please refer to Example 1 in models.

Example 2 Interface Darcy's flow

net

The baseline benchmark ex2_darcy.py: evaluation relative error is about 8e-3 to 1e-2 with a 3-level interpolation-based CNN (CiNN) feature extractor. The coarse grid latent representation is sent to attention layers The operator input is discontinuous coefficient with a random interface sampled at a discrete grid, the output is a finite difference approximation to the solution restricted to the sampled grid from a fine 421x421 grid. The coefficient in the validation set are not in the train set.

Default benchmark on a 141x141 grid using the Galerkin Transformer, 6 Galerkin-type attention layers with d_model=128 and nhead=4 as the encoder, and 2 spectral conv layers from Li et al 2020 as the decoder. There is a small dropout 5e-2 in the attention layer as well as in the feature extraction layer:

python ex2_darcy.py

For a smaller memory GPU or CPU, please use the 85x85 grid fine, 29x29 coarse grid setting:

python ex2_darcy.py --subsample-attn 15 --subsample-nodes 5 --attention-type 'galerkin' --xavier-init 0.01 --diagonal-weight 0.01

For more choices of arguments, please refer to Example 2 in models.

Example 3 Inverse coefficient identification for interface Darcy's flow

Example 3 is an inverse interface coefficient identification for Darcy flow based on the same dataset used in Example 2. However, in this example, the input and the target are reversed, i.e., the target is the interface coefficient with a random geometry, and the input is the finite difference approximation to the PDE problem, together with an optional noise added to the input to simulate measurement errors. Due to a limit of interpolation operator having no approximation property to nonsmooth functions, the coefficient cannot be resolved at the resolution, the target is sampled at a lower resolution than the input.

Evaluation input data with no noise

Evaluation input

Evaluation input data with 10% noise fed to the model

Evaluation input

True target (diffusion coefficient with a sharp interface)

Evaluation target

Reconstructed target

Evaluation target

The baseline benchmark ex3_darcy_inv.py: Evaluation relative error is about 1.5e-2 to 2e-2 without noise, 2.5e-2 with 1% noise, and 7e-2 to 8e-2 with 10% noise in both train and test. If the training data is clean, then adding noise would not generalize well in the test. It is recommended to training with a reasonable amount of noise.

Default benchmark is on a 141x141 fine grid input and a 36x36 coarse grid coefficient output. The model is the Galerkin Transformer with 6 stacked Galerkin-type attention layers (d_model=192, nhead=4) with a simple pointwise feed-forward neural network to map the attention output back the desired dimension. There is a small dropout in every key components of the network (5e-2). The noise is added to the normalized input, so 0.01 noise means 1%, and 0.1 means 10%. By default there is 1% noise added.

python ex3_darcy_inv.py --noise 0.01

For more choices of arguments, please refer to Example 3 in models.

Evaluation notebooks

Please download the pretrained model's .pt files from Releases and put them in the ./models folder.

Memory and speed profiling using autograd.profiler

Using CUDA, Fourier Transformer features an over 40% reduction in self_cuda_memory_usage versus the standard softmax normalized transformers, and Galerkin Transformer's the backpropagation speed has a 20% to 100% increase over the standard linearized transformers. If no GPU is available please enable the --no-cuda switch.

Example 1 memory profile of a model with 96 hidden dimension with an input sequence length 8192. Compare the memory usage of the Fourier transformer with the one with softmax

python ex1_memory_profile.py --batch-size 4 --seq-len 8192 --dmodel 96 --attention-type 'softmax' 'fourier'

Compare the backpropagation time usage of the Galerkin transformer versus the same net, but with Galerkin-type simple attention replaced by the standard linearized attention.

python ex1_memory_profile.py --batch-size 4 --seq-len 8192 --dmodel 96 --num-iter 100 --attention-type 'linear' 'galerkin'

Encoder layer wrapper profiling: profile a wrapper with 10 layers of encoder in a model for operators defined for functions whose domain is isomorphic to a 2D Euclidean space. Example:

python encoder_memory_profile.py --batch-size 4 --dmodel 128 --num-layers 6 -ndim 2

Please refer to the memory profile section in models for more detailed profiling in each example.

License

This software is distributed with the MIT license which translates roughly that you can use it however you want and for whatever reason you want. All the information regarding support, copyright and the license can be found in the LICENSE file.

Acknowledgement

The hardware to perform this work is provided by Andromeda Saving Fund. This work was supported in part by the National Science Foundation under grants DMS-1913080 and no additional revenues are related to this work. We would like to thank Dr. Long Chen (Univ of California Irvine) for the inspiration of and encouragement on the initial conceiving of this paper, as well as numerous constructive advices on revising this paper, not mentioning his persistent dedication of making publicly available tutorials on writing beautiful vectorized code. We would like to thank Dr. Ari Stern (Washington Univ in St. Louis) for the help on the relocation during the COVID-19 pandemic. We would like to thank Dr. Ruchi Guo (Univ of California Irvine) and Dr. Yuanzhe Xi (Emory) for the invaluable feedbacks on the choice of the numerical experiments. We would like to thank the Kaggle community, including but not limited to Jean-François Puget (Uncle [email protected]) and Murakami Akira ([email protected]) for sharing a simple Graph Transformer in Tensorflow, Cher Keng Heng ([email protected]) for sharing a Graph Transformer in PyTorch. We would like to thank [email protected], OpenVaccine, and Eterna for hosting the COVID-19 mRNA Vaccine competition and Deng Lab (Univ of Georgia) for collaborating in this competition. We would like to thank CHAMPS (Chemistry and Mathematics in Phase Space) for hosting the J-coupling quantum chemistry competition and Corey Levinson ([email protected], Eligo Energy, LLC) for collaborating in this competition. We would like to thank Zongyi Li (Caltech) for sharing some early dev code in the updated PyTorch torch.fft interface. We would like to thank Ziteng Pang (Univ of Michigan) to update us with various references on Transformers. We would like to thank Joel Schlosser to incorporate our change to the PyTorch transformer submodule to simplify our testing pipeline. We would be grateful to the PyTorch community for selflessly code sharing, including Phil Wang([email protected]) and Harvard NLP group Klein et al. (2017). We would like to thank the chebfun Driscoll et al. (2014) for integrating powerful tools into a simple interface to solve PDEs. We would like to thank Dr. Yannic Kilcher and Dr. Hung-yi Lee (National Taiwan Univ) for frequently covering the newest research on Transformers in video formats. We would also like to thank the Python community (Van Rossum and Drake (2009); Oliphant (2007)) for sharing and developing the tools that enabled this work, including Pytorch Paszke et al.(2017), NumPy Harris et al. (2020), SciPy Virtanen et al. (2020), Seaborn Waskom (2021), Plotly Inc. (2015), Matplotlib Hunter (2007), and the Python team for Visual Studio Code. For details please refer to the documents of every function that is not built from the ground up in our open-source software library.

Comments
  • 包的路径问题

    包的路径问题

    • 用命令 “pip install galerkin-transformer”, 可以安装好这个包:
    Installing collected packages: galerkin-transformer
    Successfully installed galerkin-transformer-0.1.1
    
    • 但是当我调用 “from galerkin_transformer.model import *” 语句时,会出现如下错误:
    Traceback (most recent call last):
      File "xxx/lib/python3.8/site-packages/galerkin_transformer/model.py", line 2, in <module>
        from libs.layers import *
    ModuleNotFoundError: No module named 'libs'
    
    During handling of the above exception, another exception occurred:
    
    Traceback (most recent call last):
      File "model_galerkin_transformer.py", line 7, in <module>
        from galerkin_transformer.model import *
      File "xxx/lib/python3.8/site-packages/galerkin_transformer/model.py", line 5, in <module>
        from layers import *
    ModuleNotFoundError: No module named 'layers'
    
    • 应该是包的路径管理有些问题,麻烦您debug一下(或者是我哪个地方搞错了?)
    opened by huangxiang360729 2
  • A numerical experiment problem of darcy flow experiment.

    A numerical experiment problem of darcy flow experiment.

    Hi Shuhao. Great of your work. I am running your ex2_darcy.py, the L2 loss is about 0.00914. I tried many times and the result is similar, never reach 0.00847 shown in your paper. The fine resolution is 211 and coarse resolution is 61. Is it normal?

    Thanks.

    opened by cesare4444 2
  • Question about calculation of elem in DarcyDataset

    Question about calculation of elem in DarcyDataset

    Nice job. Is there any reference for calculating the elem matrix in DarcyDataset (libs/ft.py line650-661)? What needs to be done to generalize from 2D to 3D

    opened by liyang-7 2
  • More than one channel

    More than one channel

    Hi,

    Thank you for this great contribution!

    I was just wondering what your thoughts were regarding expanding the input channels so that the models can accept multiple (x,y,z). Furthermore, the new FNO implementation has the ability to accommodate different height and width could these changes be merge with this repo?

    opened by NicolaiLassen 1
  • How does parameter initialization influencce performance?

    How does parameter initialization influencce performance?

    Hi Cao, I notice the parameter initialization in your code.

    def _reset_parameters(self):
            for param in self.linears.parameters():
                if param.ndim > 1:
                    xavier_uniform_(param, gain=self.xavier_init)
                    if self.diagonal_weight > 0.0:
                        param.data += self.diagonal_weight * \
                            torch.diag(torch.ones(
                                param.size(-1), dtype=torch.float))
                    if self.symmetric_init:
                        param.data += param.data.T
                        # param.data /= 2.0
                else:
                    constant_(param, 0)
    

    Does it influence the performance greatly? And why do you initialize the linear layers like this? Thank you very much!

    opened by WangChen100 1
Owner
Shuhao Cao
An amateur computational mathematician.
Shuhao Cao
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. Check the unlearning effect

Yige-Li 51 Dec 07, 2022
GPT, but made only out of gMLPs

GPT - gMLP This repository will attempt to crack long context autoregressive language modeling (GPT) using variations of gMLPs. Specifically, it will

Phil Wang 80 Dec 01, 2022
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Simulation of moving particles under microscopic imaging

Simulation of moving particles under microscopic imaging Install scipy numpy scikit-image tiffile Run python simulation.py Read result https://imagej

Zehao Wang 2 Dec 14, 2021
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
This repo includes our code for evaluating and improving transferability in domain generalization (NeurIPS 2021)

Transferability for domain generalization This repo is for evaluating and improving transferability in domain generalization (NeurIPS 2021), based on

gordon 9 Nov 29, 2022
WarpDrive: Extremely Fast End-to-End Deep Multi-Agent Reinforcement Learning on a GPU

WarpDrive is a flexible, lightweight, and easy-to-use open-source reinforcement learning (RL) framework that implements end-to-end multi-agent RL on a single GPU (Graphics Processing Unit).

Salesforce 334 Jan 06, 2023
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
Implementation of Bidirectional Recurrent Independent Mechanisms (Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neural Networks with Attention over Modules)

BRIMs Bidirectional Recurrent Independent Mechanisms Implementation of the paper Learning to Combine Top-Down and Bottom-Up Signals in Recurrent Neura

Sarthak Mittal 26 May 26, 2022