A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

Overview

Explorer Demo

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks.

Thanks for NVlabs' excellent work.

Features

Explorer

See how the result image response to changes of latent code & psi.

Projector Demo 1

Projector

Test the projection from image to latent code. Left is target image, right is result from generator model. Total step count and yielding interval can be configured in this page. And another hyperparameter regularize noise weight can be configured statically, see Environment Configurations.

You can save the projection result in a zip package, and this page can accept projector zip file dropping, so this feature enable you to share your projector result to others.

Projector Demo 1 Projector Demo 2

W latent space extension

We added an env switch of UNIFORM_LATENTS to denote using uniform or separated W latent code when projecting image. This is the results comparison (center is the target):

W latents result   ⇨   target image   ⇦   W+ latents result

Projection animation exporting

You can also export image projection result sequence as a gif animation:

  ⇦  

Face image pose alignment

Dataset of FFHQ's generation has a crop process to align face area.see paper, appendix C. So the output distribution of StyleGAN model learned on FFHQ has a strong prior tendency on features position. We observed that many face images projection suffers semantic mistakes, e.g. erasing original eyes and transforming eyebrow into eyes during projection fitting (however you can get a similar face at last, but it may yield freak results when you manipulate the latent code). Finally we figured out that mainly caused by unalignment with training dataset prior distribution.

Then we import the face-api to measure and align human face images as below:

- 🙂 - ✄ →

Gratefulness for the authorization by @芈砾 to use his nice opus.

Click the button [ 🙂 ] after target image loaded, if the face detection succeed, you will get the face landmark and proposed crop box. The detection result may be not very accurate, now you can adjust 3 anchor marks manually to align left eye (red), right eye (green) and mouth (blue). Then click button [✄] to apply the crop.

Merger

Once you get some latent codes by projector or turning, you can test to mix features by interpolating latent values on every W layer. This is a demo.

Merger Demo

The pair of top-left images are the source to merge, press Ctrl+V in the hash box below either image to paste input latent code via clipboard, and Ctrl+C on the right blank area to copy result latent code.

Mapping Network Research

mapping plot

I attempt to explore the StyleGAN mapping network high-dimensional terrain aspect, read this article for details.

Usage

Run the web server:

python ./http_server.py

If this works, open http://localhost:8186 in your browser.

To ensure it working, please read the following requirements before do this.

Requirements

Python

Install requirement libraries with pip, reference to requirements.txt.

Network Files

Before run the web server, StyleGAN2 pre-trained network files must be placed in local disk (recommended the folder models). You can download network files following to StyleGAN2's code.

For memory reason, only one generator model can be loaded when running the web server. Network file paths can be configured by env variables. Create a file named .env.local under project root to configure chosen model and network file paths. Network file name/paths are configured in key-value style, e.g.:

MODEL_NAME=ffhq		# ffhq is the default value, so this line can be ignored 

MODEL_PATH_ffhq=./models/stylegan2-ffhq-config-f.pkl
MODEL_PATH_cat=./models/stylegan2-cat-config-f.pkl
# And so on...

Alternately, you can also choose generator model name by start command argument, e.g.:

python ./http_server.py cat

Or, for nodejs developer:

yarn start cat

Besides generators, the network LPIPS is required when run image projector, the default local path is ./models/vgg16_zhang_perceptual.pkl, download link. You can also change local path by env variable MODEL_PATH_LPIPS.

For Windows

According to StyleGAN2 README.md, here are our additional help instructions:

  • MSVC

    NOTE: Visual Studio 2019 Community Edition seems not compatible with CUDA 10.0, Visual Studio 2017 works.

    Append the actual msvc binary directory (find in your own disk) into dnnlib/tflib/custom_ops.py, the array of compiler_bindir_search_path. For example:

     -	'C:/Program Files (x86)/Microsoft Visual Studio 14.0/vc/bin',
     +	'C:/Program Files (x86)/Microsoft Visual Studio/2017/BuildTools/VC/Tools/MSVC/14.16.27023/bin/Hostx64/x64',
  • NVCC

    To test if nvcc is configured properly, dowload test_nvcc.cu in StyleGAN2 project. And the test command should specify binary path:

     nvcc test_nvcc.cu -o test_nvcc -run -ccbin "C:\Program Files (x86)\Microsoft VisualStudio\2017\BuildTools\VC\Tools\MSVC\14.16.27023\bin\Hostx64\x64"

    Actual path to different msvc edition may have difference in detail. If this succeed, it will build a file named test_nvcc.exe.

  • Tips for tensorflow 1.15

    Tensorflow 1.15 can work under Windows, but NVCC compiling may encounter C++ including path problem. Here is an easy workaround: make a symbolic link in python installation directory Python36\Lib\site-packages\tensorflow_core:

     mklink /J tensorflow tensorflow_core
  • Tips for tensorflow 2.x

    Tensorflow 2.0+ can work now! I have solved the compatibility issues with TF2 already, including some modification of code bundled in pickle. Except one problem on Windows, if you encountered this:

    C:/Users/xxx/AppData/Local/Programs/Python/Python36/lib/site-packages/tensorflow/include\unsupported/Eigen/CXX11/Tensor(74): fatal error C1083: Cannot open include file: 'unistd.h': No such file or directory

    Just open this file and comment out this line simply:

    #include

    It seems a bug of tensorflow, and I have committed an issue for them.

  • cudafe++ issue

    If you encountered python console error like:

     nvcc error : 'cudafe++' died with status 0xC0000005 (ACCESS_VIOLATION)
    

    That may caused by a bug from CUDA 10.0, you can fix this issue by replacing your cudafe++.exe file in CUDA program bin directory by the same name file from CUDA 10.1 or higher version. And you are welcome to download my backup to avoid install a whole new version CUDA.

Environment Configurations

To manage environment variables conveniently, create a configuration file named .env.local. All avaiable env list:

Key Description Default Value
HTTP_HOST Web server host. 127.0.0.1
HTTP_PORT Web server port. 8186
MODEL_NAME Name for the generator model to load, this can be overwrite by the first argument of start script. ffhq
MODEL_PATH_LPIPS File path for LPIPS model. ./models/vgg16_zhang_perceptual.pkl
MODEL_PATH_* Generator network file path dictionary. See examples.
REGULARIZE_NOISE_WEIGHT Projector training hyperparameter. Float. 1e5
INITIAL_NOISE_FACTOR Projector training hyperparameter. Float. 0.05
EUCLIDEAN_DIST_WEIGHT Projector training hyperparameter. Float. 1
REGULARIZE_MAGNITUDE_WEIGHT Projector training hyperparameter. Float. 0
UNIFORM_LATENTS Use uniform latents for all feature layers (consistent with origin StyleGAN2 paper). Boolean, 0 or 1 0

 

 

 

A Bonus :)

Owner
K.L.
K.L.
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
The first dataset of composite images with rationality score indicating whether the object placement in a composite image is reasonable.

Object-Placement-Assessment-Dataset-OPA Object-Placement-Assessment (OPA) is to verify whether a composite image is plausible in terms of the object p

BCMI 53 Nov 15, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 08, 2023
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
Magisk module to enable hidden features on Android 12 Developer Preview 1.

Android 12 Extensions This is a Magisk module that enables hidden features on Android 12 Developer Preview 1. Features Scrolling screenshots Wallpaper

Danny Lin 384 Jan 06, 2023
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Structural Constraints on Information Content in Human Brain States

Structural Constraints on Information Content in Human Brain States Code accompanying the paper "The information content of brain states is explained

Leon Weninger 3 Sep 07, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
A repository with exploration into using transformers to predict DNA ↔ transcription factor binding

Transcription Factor binding predictions with Attention and Transformers A repository with exploration into using transformers to predict DNA ↔ transc

Phil Wang 62 Dec 20, 2022