Adversarially Learned Inference

Related tags

Deep LearningALI
Overview

Adversarially Learned Inference

Code for the Adversarially Learned Inference paper.

Compiling the paper locally

From the repo's root directory,

$ cd papers
$ latexmk --pdf adverarially_learned_inference

Requirements

  • Blocks, development version
  • Fuel, development version

Setup

Clone the repository, then install with

$ pip install -e ALI

Downloading and converting the datasets

Set up your ~/.fuelrc file:

$ echo "data_path: \"<MY_DATA_PATH>\"" > ~/.fuelrc

Go to <MY_DATA_PATH>:

$ cd <MY_DATA_PATH>

Download the CIFAR-10 dataset:

$ fuel-download cifar10
$ fuel-convert cifar10
$ fuel-download cifar10 --clear

Download the SVHN format 2 dataset:

$ fuel-download svhn 2
$ fuel-convert svhn 2
$ fuel-download svhn 2 --clear

Download the CelebA dataset:

$ fuel-download celeba 64
$ fuel-convert celeba 64
$ fuel-download celeba 64 --clear

Training the models

Make sure you're in the repo's root directory.

CIFAR-10

$ THEANORC=theanorc python experiments/ali_cifar10.py

SVHN

$ THEANORC=theanorc python experiments/ali_svhn.py

CelebA

$ THEANORC=theanorc python experiments/ali_celeba.py

Toy task

$ THEANORC=theanorc python experiments/ali_mixture.py
$ THEANORC=theanorc python experiments/gan_mixture.py

Evaluating the models

Samples

$ THEANORC=theanorc scripts/sample [main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/sample ali_cifar10.tar

Interpolations

$ THEANORC=theanorc scripts/interpolate [which_dataset] [main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/interpolate celeba ali_celeba.tar

Reconstructions

$ THEANORC=theanorc scripts/reconstruct [which_dataset] [main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/reconstruct cifar10 ali_cifar10.tar

Semi-supervised learning on SVHN

First, preprocess the SVHN dataset with the learned ALI features:

$ THEANORC=theanorc scripts/preprocess_representations [main_loop.tar] [save_path.hdf5]

e.g.

$ THEANORC=theanorc scripts/preprocess_representations ali_svhn.tar ali_svhn_preprocessed.hdf5

Then, launch the semi-supervised script:

$ python experiments/semi_supervised_svhn.py ali_svhn.tar [save_path.hdf5]

e.g.

$ python experiments/semi_supervised_svhn.py ali_svhn_preprocessed.hdf5

[...]
Validation error rate = ... +- ...
Test error rate = ... +- ...

Toy task

$ THEANORC=theanorc scripts/generate_mixture_plots [ali_main_loop.tar] [gan_main_loop.tar]

e.g.

$ THEANORC=theanorc scripts/generate_mixture_plots ali_mixture.tar gan_mixture.tar
Comments
  • Conditional Generation

    Conditional Generation

    I'm interested in getting the update to this codebase that includes the conditional generation, as covered in the more recent version of the paper (related image below). Can you let me know if that will be added to the repo? celeba_conditional_sequence

    opened by dribnet 8
  • mistake in D(x,z) input size

    mistake in D(x,z) input size

    In table 5 from the paper you state that the input size for D(x,z) is 1024x1x1 which I think it's wrong after looking at the previous output sizes D(x) and D(z). I think that should be 1536x1x1.

    Is that assumption correct?

    opened by edgarriba 5
  • deserialization of models hangs

    deserialization of models hangs

    Training goes well for me using the scripts in experiments with the latest version of blocks, but then when I run any subsequent command that uses the generated model like scripts/sample or scripts/reconstruct, the command hangs indefinitely. My guess is that the deserialization is getting jammed up.

    I can look into it more - not yet familiar with the new tar format - but curious if this might be a known issue.

    opened by dribnet 3
  • Fuel version problem

    Fuel version problem

    I installed the current development version of fuel, but had some issue in fuel downloading.

    $ fuel-download celeba 64 $ fuel-convert celeba 64 $ fuel-download celeba 64 --clear

    The error message I got is: fuel-download: error: unrecognized arguments: 64 if I remove 64, I got: TypeError: init() got an unexpected keyword argument 'max_value'

    Could someone please specify what version or commits of fuel and progressbar should I use? Thanks

    opened by hope-yao 1
  • Where to use the reparametrization trick

    Where to use the reparametrization trick

    In the decoder module. I found that z is sampled from N(0, 1), so where did you use the reparametrization trick described in formual (2) and (3) in the paper

    opened by wuhaozhe 0
  • semi-supervised learning

    semi-supervised learning

    Hello,I read the paper and the source code.And it mentioned 'The last three hidden layers of the encoder as well as its output are concatenated to form a 8960-dimensional feature vector.' in section 4.3 of the paper.Could you please tell me how to compute the dimension?Thanks very much

    opened by C-xiaomeng 1
  • ImportError: No module named ali.utils

    ImportError: No module named ali.utils

    I followed the same steps in the readme file, but when I run this line

    $ THEANORC=theanorc python experiments/ali_cifar10.py

    I get:

    Traceback (most recent call last):
      File "experiments/ali_cifar10.py", line 3, in <module>
        from ali.utils import get_log_odds, conv_brick, conv_transpose_brick, bn_brick
    ImportError: No module named ali.utils
    
    opened by xtarx 0
  • Preprocess_representation has a bug for me

    Preprocess_representation has a bug for me

    Hi, I was trying to reproduce the representation learning results of paper. Everything works fine except "preprocess_representations" script. It is leading to this error:

    File "scripts/preprocess_representations", line 32, in preprocess_svhn bricks=[ali.encoder.layers[-9], ali.encoder.layers[-6], AttributeError: 'GaussianConditional' object has no attribute 'layers'

    Any help would be appreciated.

    opened by MarziEd 1
  • Semi-supervised learning

    Semi-supervised learning

    I've been trying to reproduce your figures for semi-supervised learning on CIFAR-10 (19.98% with 1000 labels). This result is based on the technique proposed in Salimans et al. (2016), not SVMs. Is there any way you can include your code, or at least any changes to the hyperparameters in ali_cifar10.py?

    Thanks in advance for your help.

    opened by christiancosgrove 7
Releases(v1)
Owner
Mohamed Ishmael Belghazi
Mohamed Ishmael Belghazi
[ICLR'21] Counterfactual Generative Networks

This repository contains the code for the ICLR 2021 paper "Counterfactual Generative Networks" by Axel Sauer and Andreas Geiger. If you want to take the CGN for a spin and generate counterfactual ima

88 Jan 02, 2023
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

PSGAN running with ncnn⚡妆容迁移/仿妆⚡Imitation Makeup/Makeup Transfer⚡

WuJinxuan 144 Dec 26, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

Nermin Samet 53 Dec 04, 2022
A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

GFNet-Pytorch (NeurIPS 2020) This repo contains the official code and pre-trained models for the glance and focus network (GFNet). Glance and Focus: a

Rainforest Wang 169 Oct 28, 2022
Unofficial PyTorch code for BasicVSR

Dependencies and Installation The code is based on BasicSR, Please install the BasicSR framework first. Pytorch=1.51 Training cd ./code CUDA_VISIBLE_

Long 59 Dec 06, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
PyTorch implementation of PNASNet-5 on ImageNet

PNASNet.pytorch PyTorch implementation of PNASNet-5. Specifically, PyTorch code from this repository is adapted to completely match both my implemetat

Chenxi Liu 314 Nov 25, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Generalized hybrid model for mode-locked laser diodes with an extended passive cavity

GenHybridMLLmodel Generalized hybrid model for mode-locked laser diodes with an extended passive cavity This hybrid simulation strategy combines a tra

Stijn Cuyvers 3 Sep 21, 2022
Implementation of "Selection via Proxy: Efficient Data Selection for Deep Learning" from ICLR 2020.

Selection via Proxy: Efficient Data Selection for Deep Learning This repository contains a refactored implementation of "Selection via Proxy: Efficien

Stanford Future Data Systems 70 Nov 16, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022