[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

Overview

3DVG-Transformer

This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds"

Our method "3DVG-Transformer+" is the 1st method on the ScanRefer benchmark (2021/3 - 2021/11) and is the winner of the CVPR2021 1st Workshop on Language for 3D Scenes

🌟 3DVG-Transformer+ achieves comparable results with papers published in [CVPR2022]. 🌟

image-Model

Introduction

Visual grounding on 3D point clouds is an emerging vision and language task that benefits various applications in understanding the 3D visual world. By formulating this task as a grounding-by-detection problem, lots of recent works focus on how to exploit more powerful detectors and comprehensive language features, but (1) how to model complex relations for generating context-aware object proposals and (2) how to leverage proposal relations to distinguish the true target object from similar proposals are not fully studied yet. Inspired by the well-known transformer architecture, we propose a relation-aware visual grounding method on 3D point clouds, named as 3DVG-Transformer, to fully utilize the contextual clues for relation-enhanced proposal generation and cross-modal proposal disambiguation, relation-aware proposal generation and cross-modal feature fusion, which are enabled by a newly designed coordinate-guided contextual aggregation (CCA) module in the object proposal generation stage, and a multiplex attention (MA) module in the cross-modal feature fusion stage. With the aid of two proposed feature augmentation strategies to alleviate overfitting, we validate that our 3DVG-Transformer outperforms the state-of-the-art methods by a large margin, on two point cloud-based visual grounding datasets, ScanRefer and Nr3D/Sr3D from ReferIt3D, especially for complex scenarios containing multiple objects of the same category.

Dataset & Setup

Data preparation

This codebase is built based on the initial ScanRefer codebase. Please refer to ScanRefer for more data preprocessing details.

  1. Download the ScanRefer dataset and unzip it under data/.
  2. Downloadand the preprocessed GLoVE embeddings (~990MB) and put them under data/.
  3. Download the ScanNetV2 dataset and put (or link) scans/ under (or to) data/scannet/scans/ (Please follow the ScanNet Instructions for downloading the ScanNet dataset).

After this step, there should be folders containing the ScanNet scene data under the data/scannet/scans/ with names like scene0000_00

  1. Pre-process ScanNet data. A folder named scannet_data/ will be generated under data/scannet/ after running the following command. Roughly 3.8GB free space is needed for this step:
cd data/scannet/
python batch_load_scannet_data.py

After this step, you can check if the processed scene data is valid by running:

python visualize.py --scene_id scene0000_00
  1. (Optional) Pre-process the multiview features from ENet.
python script/project_multiview_features.py --maxpool

Setup

The code is tested on Ubuntu 16.04 LTS & 18.04 LTS with PyTorch 1.2.0 CUDA 10.0 installed.

Please refer to the initial ScanRefer for pointnet2 packages for the newer version (>=1.3.0) of PyTorch.

You could use other PointNet++ implementations for the lower version (<=1.2.0) of PyTorch.

conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch

Install the necessary packages listed out in requirements.txt:

pip install -r requirements.txt

After all packages are properly installed, please run the following commands to compile the CUDA modules for the PointNet++ backbone:

cd lib/pointnet2
python setup.py install

Before moving on to the next step, please don't forget to set the project root path to the CONF.PATH.BASE in lib/config.py.

Usage

Training

To train the 3DVG-Transformer model with multiview features:

python scripts/ScanRefer_train.py --use_multiview --use_normal --batch_size 8 --epoch 200 --lr 0.002 --coslr --tag 3dvg-trans+

settings: XYZ: --use_normal XYZ+RGB: --use_color --use_normal XYZ+Multiview: --use_multiview --use_normal

For more training options (like using preprocessed multiview features), please run scripts/train.py -h.

Evaluation

To evaluate the trained models, please find the folder under outputs/ and run:

python scripts/ScanRefer_eval.py --folder <folder_name> --reference --use_multiview --no_nms --force --repeat 5 --lang_num_max 1

Note that the flags must match the ones set before training. The training information is stored in outputs/<folder_name>/info.json

Note that the results generated by ScanRefer_eval.py may be slightly lower than the test results during training. The main reason is that the results of model testing fluctuate, while the maximum value is reported during training, and we do not use a fixed test seed.

Benchmark Challenge

Note that every user is allowed to submit the test set results of each method only twice, and the ScanRefer benchmark blocks update the test set results of a method for two weeks after a test set submission.

After finishing training the model, please download the benchmark data and put the unzipped ScanRefer_filtered_test.json under data/. Then, you can run the following script the generate predictions:

python benchmark/predict.py --folder <folder_name> --use_color

Note that the flags must match the ones set before training. The training information is stored in outputs/<folder_name>/info.json. The generated predictions are stored in outputs/<folder_name>/pred.json. For submitting the predictions, please compress the pred.json as a .zip or .7z file and follow the instructions to upload your results.

Visualization

image-Visualization

To predict the localization results predicted by the trained ScanRefer model in a specific scene, please find the corresponding folder under outputs/ with the current timestamp and run:

python scripts/visualize.py --folder <folder_name> --scene_id <scene_id> --use_color

Note that the flags must match the ones set before training. The training information is stored in outputs/<folder_name>/info.json. The output .ply files will be stored under outputs/<folder_name>/vis/<scene_id>/

In our next version, the heatmap visualization code will be open-sourced in the 3DJCG (CVPR2022, Oral) codebase.

The generated .ply or .obj files could be visualized in software such as MeshLab.

Results

image-Results

settings: 3D Only (XYZ+RGB): --use_color --use_normal 2D+3D (XYZ+Multiview): --use_multiview --use_normal

Validation Set Unique Unique Multiple Multiple Overall Overall
Methods Publication Modality [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
SCRC CVPR16 2D 24.03 9.22 17.77 5.97 18.70 6.45
One-Stage ICCV19 2D 29.32 22.82 18.72 6.49 20.38 9.04
ScanRefer ECCV2020 3D 67.64 46.19 32.06 21.26 38.97 26.10
TGNN AAAI2021 3D 68.61 56.80 29.84 23.18 37.37 29.70
InstanceRefer ICCV2021 3D 77.45 66.83 31.27 24.77 40.23 32.93
SAT ICCV2021 3D 73.21 50.83 37.64 25.16 44.54 30.14
3DVG-Transformer (ours) ICCV2021 3D 77.16 58.47 38.38 28.70 45.90 34.47
BEAUTY-DETR - 3D - - - - 46.40 -
3DJCG CVPR2022 3D 78.75 61.30 40.13 30.08 47.62 36.14
3D-SPS CVPR2022 3D 81.63 64.77 39.48 29.61 47.65 36.43
ScanRefer ECCV2020 2D + 3D 76.33 53.51 32.73 21.11 41.19 27.40
TGNN AAAI2021 2D + 3D 68.61 56.80 29.84 23.18 37.37 29.70
InstanceRefer ICCV2021 2D + 3D 75.72 64.66 29.41 22.99 38.40 31.08
3DVG-Transformer (Ours) ICCV2021 2D + 3D 81.93 60.64 39.30 28.42 47.57 34.67
3DVG-Transformer+(Ours, this codebase) - 2D + 3D 83.25 61.95 41.20 30.29 49.36 36.43
MVT-3DVG CVPR2022 2D + 3D 77.67 66.45 31.92 25.26 40.80 33.26
3DJCG CVPR2022 2D + 3D 83.47 64.34 41.39 30.82 49.56 37.33
3D-SPS CVPR2022 2D + 3D 84.12 66.72 40.32 29.82 48.82 36.98
Online Benchmark Unique Unique Multiple Multiple Overall Overall
Methods Modality [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
ScanRefer 2D + 3D 68.59 43.53 34.88 20.97 42.44 26.03
TGNN 2D + 3D 68.34 58.94 /33.12 25.26 41.02 32.81
InstanceRefer 2D + 3D 77.82 66.69 34.57 26.88 44.27 35.80
3DVG-Transformer (Ours) 2D + 3D 75.76 55.15 42.24 29.33 49.76 35.12
3DVG-Transformer+(Ours) 2D + 3D 77.33 57.87 43.70 31.02 51.24 37.04

Changelog

2022/04: Update Readme.md.

2022/04: Release the codes of 3DVG-Transformer.

2021/07: 3DVG-Transformer is accepted at ICCV 2021.

2021/06: 3DVG-Transformer+ won the ScanRefer Challenge in the CVPR2021 1st Workshop on Language for 3D Scenes.

2021/04: 3DVG-Transformer+ achieves 1st place in ScanRefer Leaderboard.

Citation

If you use the codes in your work, please kindly cite our work 3DVG-Transformer and the original ScanRefer paper:

@inproceedings{zhao2021_3DVG_Transformer,
    title={{3DVG-Transformer}: Relation modeling for visual grounding on point clouds},
    author={Zhao, Lichen and Cai, Daigang and Sheng, Lu and Xu, Dong},
    booktitle={ICCV},
    pages={2928--2937},
    year={2021}
}

@article{chen2020scanrefer,
    title={{ScanRefer}: 3D Object Localization in RGB-D Scans using Natural Language},
    author={Chen, Dave Zhenyu and Chang, Angel X and Nie{\ss}ner, Matthias},
    pages={202--221},
    journal={ECCV},
    year={2020}
}

Acknowledgement

We would like to thank facebookresearch/votenet for the 3D object detection codebase and erikwijmans/Pointnet2_PyTorch for the CUDA accelerated PointNet++ implementation.

For further acceleration, you could use KD-Tree to accelerate the PointNet++ process.

License

This repository is released under MIT License (see LICENSE file for details).

Owner
About me: zlc1114
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

129 Jan 04, 2023
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
LBK 26 Dec 28, 2022
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
A series of Jupyter notebooks with Chinese comment that walk you through the fundamentals of Machine Learning and Deep Learning in python using Scikit-Learn and TensorFlow.

Hands-on-Machine-Learning 目的 这份笔记旨在帮助中文学习者以一种较快较系统的方式入门机器学习, 是在学习Hands-on Machine Learning with Scikit-Learn and TensorFlow这本书的 时候做的个人笔记: 此项目的可取之处 原书的

Baymax 1.5k Dec 21, 2022
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
Code for the Higgs Boson Machine Learning Challenge organised by CERN & EPFL

A method to solve the Higgs boson challenge using Least Squares - Novae This project is the Project 1 of EPFL CS-433 Machine Learning. The project is

Giacomo Orsi 1 Nov 09, 2021
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
OptNet: Differentiable Optimization as a Layer in Neural Networks

OptNet: Differentiable Optimization as a Layer in Neural Networks This repository is by Brandon Amos and J. Zico Kolter and contains the PyTorch sourc

CMU Locus Lab 428 Dec 24, 2022