RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

Related tags

Deep Learningrrxio
Overview

RRxIO - Robust Radar Visual/Thermal Inertial Odometry

RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO combines radar ego velocity estimates and Visual Inertial Odometry (VIO) or Thermal Inertial Odometry (TIO) in a single filter by extending rovio. Thus, state estimation in challenging visual conditions (e.g. darkness, direct sunlight, fog) or challenging thermal conditions (e.g. temperature gradient poor environments or outages caused by non uniformity corrections) is possible. In addition, the drift free radar ego velocity estimates reduce scale errors and the overall accuracy as compared to monocular VIO/TIO. RRxIO runs many times faster than real-time on an Intel NUC i7 and achieves real-time on an UpCore embedded computer.

Cite

If you use RRxIO for your academic research, please cite our related paper:

@INPROCEEDINGS{DoerIros2021,
  author={Doer, Christopher and Trommer, Gert F.},
  booktitle={2021 IEEE/RSJ International Conference on Intelligent Rotots and Sytems (IROS)}, 
  title={Radar Visual Inertial Odometry and Radar Thermal Inertial Odometry: Robust Navigation even in Challenging Visual Conditions}, 
  year={2021}}

Demo Result: IRS Radar Thermal Visual Inertial Datasets IROS 2021

Motion Capture Lab (translational RMSE (ATE [m]))

image

Indoor and Outdoors (translational RMSE (ATE [m]))

image

Runtime (Real-time factor)

image

Getting Started

RRxIO depends on:

Additional dependencies are required to run the evaluation framework:

  • sudo apt-get install texlive-latex-extra texlive-fonts-recommended dvipng cm-super
  • pip2 install -U PyYAML colorama ruamel.yaml==0.15.0

The following dependencies are included via git submodules (run once upon setup: git submodule update --init --recursive):

Build in Release is highly recommended:

catkin build rrxio --cmake-args -DCMAKE_BUILD_TYPE=Release

Run Demos

Download the IRS Radar Thermal Visual Inertial Datasets IROS 2021 datasets.

Run the mocap_easy datasets with visual RRxIO:

roslaunch rrxio rrxio_visual_iros_demo.launch rosbag_dir:=<path-to-rtvi_datastets_iros_2021> rosbag:=mocap_easy

Run the outdoor_street datasets with thermal RRxIO:

roslaunch rrxio rrxio_thermal_iros_demo.launch rosbag_dir:=<path-to-rtvi_datastets_iros_2021> rosbag:=outdoor_street

Run Evaluation IRS Radar Thermal Visual Inertial Datasets IROS 2021

The evaluation script is also provided which does an extensive evaluation of RRxIO_10, RRxIO_15, RRxIO_25 on all IRS Radar Thermal Visual Inertial Datasets IROS 2021 datasets:

rosrun rrxio evaluate_iros_datasets.py <path-to-rtvi_datastets_iros_2021>

After some time, the results can be found at <path-to-rtvi_datastets_iros_2021>/results/evaluation/<10/15/25>/evaluation_full_align. These results are also shown in the table above.

Owner
Christopher Doer
Christopher Doer
Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER 🦌 🦒 Official Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEE

33 Dec 23, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
The code of "Dependency Learning for Legal Judgment Prediction with a Unified Text-to-Text Transformer".

Code data_preprocess.py: preprocess data for Dependent-T5. parameters.py: define parameters of Dependent-T5. train_tools.py: traning and evaluation co

1 Apr 21, 2022
Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach

Introduction Datasets and source code for our paper Webly Supervised Fine-Grained Recognition: Benchmark Datasets and An Approach Datasets: WebFG-496

21 Sep 30, 2022
Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

KnowPrompt Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction" Requireme

ZJUNLP 137 Dec 31, 2022
Multi-angle c(q)uestion answering

Macaw Introduction Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of general question answering, showing robustness outside

AI2 430 Jan 04, 2023
TuckER: Tensor Factorization for Knowledge Graph Completion

TuckER: Tensor Factorization for Knowledge Graph Completion This codebase contains PyTorch implementation of the paper: TuckER: Tensor Factorization f

Ivana Balazevic 296 Dec 06, 2022
Code for "Modeling Indirect Illumination for Inverse Rendering", CVPR 2022

Modeling Indirect Illumination for Inverse Rendering Project Page | Paper | Data Preparation Set up the python environment conda create -n invrender p

ZJU3DV 116 Jan 03, 2023
Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

RNN-for-Joint-NLU Pytorch implementation of "Attention-Based Recurrent Neural Network Models for Joint Intent Detection and Slot Filling"

Kim SungDong 194 Dec 28, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Time Dependent DFT in Tamm-Dancoff Approximation

Density Function Theory Program - kspy-tddft(tda) This is an implementation of Time-Dependent Density Functional Theory(TDDFT) using the Tamm-Dancoff

Peter Borthwick 2 Nov 17, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022
Uses OpenCV and Python Code to detect a face on the screen

Simple-Face-Detection This code uses OpenCV and Python Code to detect a face on the screen. This serves as an example program. Important prerequisites

Denis Woolley (CreepyD) 1 Feb 12, 2022
Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022.

Jadena Official implementation of "Can You Spot the Chameleon? Adversarially Camouflaging Images from Co-Salient Object Detection" in CVPR 2022. arXiv

Qing Guo 13 Nov 29, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022