[CVPR 2021] Monocular depth estimation using wavelets for efficiency

Overview

Single Image Depth Prediction with Wavelet Decomposition

Michaรซl Ramamonjisoa, Michael Firman, Jamie Watson, Vincent Lepetit and Daniyar Turmukhambetov

CVPR 2021

[Link to paper]

kitti gif nyu gif

We introduce WaveletMonoDepth, which improves efficiency of standard encoder-decoder monocular depth estimation methods by exploiting wavelet decomposition.

5 minute CVPR presentation video link

๐Ÿง‘โ€๐Ÿซ Methodology

WaveletMonoDepth was implemented for two benchmarks, KITTI and NYUv2. For each dataset, we build our code upon a baseline code. Both baselines share a common encoder-decoder architecture, and we modify their decoder to provide a wavelet prediction.

Wavelets predictions are sparse, and can therefore be computed only at relevant locations, therefore saving a lot of unnecessary computations.

our architecture

The network is first trained with a dense convolutions in the decoder until convergence, and the dense convolutions are then replaced with sparse ones.

This is because the network first needs to learn to predict sparse wavelet coefficients before we can use sparse convolutions.

๐Ÿ—‚ Environment Requirements ๐Ÿ—‚

We recommend creating a new Anaconda environment to use WaveletMonoDepth. Use the following to setup a new environment:

conda env create -f environment.yml
conda activate wavelet-mdp

Our work uses Pytorch Wavelets, a great package from Fergal Cotter which implements the Inverse Discrete Wavelet Transform (IDWT) used in our work, and a lot more! To install Pytorch Wavelets, simply run:

git clone https://github.com/fbcotter/pytorch_wavelets
cd pytorch_wavelets
pip install .

๐Ÿš— ๐Ÿšฆ KITTI ๐ŸŒณ ๐Ÿ›ฃ

Depth Hints was used as a baseline for KITTI.

Depth Hints builds upon monodepth2. If you have questions about running the code, please see the issues in their repositories first.

โš™ Setup, Training and Evaluation

Please see the KITTI directory of this repository for details on how to train and evaluate our method.

๐Ÿ“Š Results ๐Ÿ“ฆ Trained models

Please find below the scores using dense convolutions to predict wavelet coefficients. Download links coming soon!

Model name Training modality Resolution abs_rel RMSE ฮด<1.25 Weights Eigen Predictions
Ours Resnet18 Stereo + DepthHints 640 x 192 0.106 4.693 0.876 Coming soon Coming soon
Ours Resnet50 Stereo + DepthHints 640 x 192 0.105 4.625 0.879 Coming soon Coming soon
Ours Resnet18 Stereo + DepthHints 1024 x 320 0.102 4.452 0.890 Coming soon Coming soon
Ours Resnet50 Stereo + DepthHints 1024 x 320 0.097 4.387 0.891 Coming soon Coming soon

๐ŸŽš Playing with sparsity

However the most interesting part is that we can make use of the sparsity property of the predicted wavelet coefficients to trade-off performance with efficiency, at a minimal cost on performance. We do so by tuning the threshold, and:

  • low thresholds values will lead to high performance but high number of computations,
  • high thresholds will lead to highly efficient computation, as convolutions will be computed only in a few pixel locations. This will have a minimal impact on performance.

sparsify kitti

Computing coefficients at only 10% of the pixels in the decoding process gives a relative score loss of less than 1.4%.

scores kitti

Our wavelet based method allows us to greatly reduce the number of computation in the decoder at a minimal expense in performance. We can measure the performance-vs-efficiency trade-off by evaluating scores vs FLOPs.

scores vs flops kitti

๐Ÿช‘ ๐Ÿ› NYUv2 ๐Ÿ›‹ ๐Ÿšช

Dense Depth was used as a baseline for NYUv2. Note that we used the experimental PyTorch implementation of DenseDepth. Note that compared to the original paper, we made a few different modifications:

  • we supervise depth directly instead of supervising disparity
  • we do not use SSIM
  • we use DenseNet161 as encoder instead of DenseNet169

โš™ Setup, Training and Evaluation

Please see the NYUv2 directory of this repository for details on how to train and evaluate our method.

๐Ÿ“Š Results and ๐Ÿ“ฆ Trained models

Please find below the scores and associated trained models, using dense convolutions to predict wavelet coefficients.

Model name Encoder Resolution abs_rel RMSE ฮด<1.25 ฮต_acc Weights Eigen Predictions
Baseline DenseNet 640 x 480 0.1277 0.5479 0.8430 1.7170 Coming soon Coming soon
Ours DenseNet 640 x 480 0.1258 0.5515 0.8451 1.8070 Coming soon Coming soon
Baseline MobileNetv2 640 x 480 0.1772 0.6638 0.7419 1.8911 Coming soon Coming soon
Ours MobileNetv2 640 x 480 0.1727 0.6776 0.7380 1.9732 Coming soon Coming soon

๐ŸŽš Playing with sparsity

As with the KITTI dataset, we can tune the wavelet threshold to greatly reduce computation at minimal cost on performance.

sparsify nyu

Computing coefficients at only 5% of the pixels in the decoding process gives a relative depth score loss of less than 0.15%.

scores nyu

๐ŸŽฎ Try it yourself!

Try using our Jupyter notebooks to visualize results with different levels of sparsity, as well as compute the resulting computational saving in FLOPs. Notebooks can be found in <DATASET>/sparsity_test_notebook.ipynb where <DATASET> is either KITTI or NYUv2.

โœ๏ธ ๐Ÿ“„ Citation

If you find our work useful or interesting, please consider citing our paper:

@inproceedings{ramamonjisoa-2021-wavelet-monodepth,
  title     = {Single Image Depth Prediction with Wavelet Decomposition},
  author    = {Ramamonjisoa, Micha{\"{e}}l and
               Michael Firman and
               Jamie Watson and
               Vincent Lepetit and
               Daniyar Turmukhambetov},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  month = {June},
  year = {2021}
}

๐Ÿ‘ฉโ€โš–๏ธ License

Copyright ยฉ Niantic, Inc. 2021. Patent Pending. All rights reserved. Please see the license file for terms.

Owner
Niantic Labs
Building technologies and ideas that move us
Niantic Labs
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
A community run, 5-day PyTorch Deep Learning Bootcamp

Deep Learning Winter School, November 2107. Tel Aviv Deep Learning Bootcamp : http://deep-ml.com. About Tel-Aviv Deep Learning Bootcamp is an intensiv

Shlomo Kashani. 1.3k Sep 04, 2021
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramรณn Casero 1 Jan 07, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter ยท Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
Tutorial on scikit-learn and IPython for parallel machine learning

Parallel Machine Learning with scikit-learn and IPython Video recording of this tutorial given at PyCon in 2013. The tutorial material has been rearra

Olivier Grisel 1.6k Dec 26, 2022
FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks Image Classification Dataset: Google Landmark, COCO, ImageNet Model: Efficient

FedML-AI 62 Dec 10, 2022
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
a baseline to practice

ccks2021_track3_baseline a baseline to practice ่ทฏๅพ„ๅฏ่ƒฝไผšๆœ‰้—ฎ้ข˜๏ผŒ่‡ชๅทฑๆ”นๆ”น torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
EMNLP 2021 Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections

Adapting Language Models for Zero-shot Learning by Meta-tuning on Dataset and Prompt Collections Ruiqi Zhong, Kristy Lee*, Zheng Zhang*, Dan Klein EMN

Ruiqi Zhong 42 Nov 03, 2022
Code for "Offline Meta-Reinforcement Learning with Advantage Weighting" [ICML 2021]

Offline Meta-Reinforcement Learning with Advantage Weighting (MACAW) MACAW code used for the experiments in the ICML 2021 paper. Installing the enviro

Eric Mitchell 28 Jan 01, 2023
This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to generate a dynamic forecast from your own data.

๐Ÿ“ˆ Automated Time Series Forecasting Background: This MVP data web app uses the Streamlit framework and Facebook's Prophet forecasting package to gene

Zach Renwick 42 Jan 04, 2023
code for our ECCV 2020 paper "A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation"

Code for our ECCV (2020) paper A Balanced and Uncertainty-aware Approach for Partial Domain Adaptation. Prerequisites: python == 3.6.8 pytorch ==1.1.0

32 Nov 27, 2022
Implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networks, using PyTorch

C-CNN: Contourlet Convolutional Neural Networks This repo implemenets the Contourlet-CNN as described in C-CNN: Contourlet Convolutional Neural Networ

Goh Kun Shun (KHUN) 10 Nov 03, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023