Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Overview

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Overview

This project is a Torch implementation for our CVPR 2016 paper, which performs jointly unsupervised learning of deep CNN and image clusters. The intuition behind this is that better image representation will facilitate clustering, while better clustering results will help representation learning. Given a unlabeled dataset, it will iteratively learn CNN parameters unsupervisedly and cluster images.

Disclaimer

This is a torch version reimplementation to the code used in our CVPR paper. There is a slight difference between the code used to report the results in our paper. The Caffe version code can be found here.

License

This code is released under the MIT License (refer to the LICENSE file for details).

Citation

If you find our code is useful in your researches, please consider citing:

@inproceedings{yangCVPR2016joint,
    Author = {Yang, Jianwei and Parikh, Devi and Batra, Dhruv},
    Title = {Joint Unsupervised Learning of Deep Representations and Image Clusters},
    Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    Year = {2016}
}

Dependencies

  1. Torch. Install Torch by:

    $ curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-deps | bash
    $ git clone https://github.com/torch/distro.git ~/torch --recursive
    $ cd ~/torch; 
    $ ./install.sh      # and enter "yes" at the end to modify your bashrc
    $ source ~/.bashrc

    After installing torch, you may also need install some packages using LuaRocks:

    $ luarocks install nn
    $ luarocks install image 

    It is preferred to run the code on GPU. Thus you need to install cunn:

    $ luarocks install cunn
  2. lua-knn. It is used to compute the distance between neighbor samples. Go into the folder, and then compile it with:

    $ luarocks make

Typically, you can run our code after installing the above two packages. Please let me know if error occurs.

Installation Using Nvidia-Docker

  1. Run docker build -t .
  2. Run nvidia-docker run -it /bin/bash

Train model

  1. It is very simple to run the code for training model. For example, if you want to train on USPS dataset, you can run:

    $ th train.lua -dataset USPS -eta 0.9

    Note that it runs on fast mode by default. You can change it to regular mode by setting "-use_fast 0". In the above command, eta is the unfolding rate. For face dataset, we recommand 0.2, while for other datasets, it is set to 0.9 to save training time. During training, you will see the normalize mutual information (NMI) for the clustering results.

  2. You can train multiple models in parallel by:

    $ th train.lua -dataset USPS -eta 0.9 -num_nets 5

    By this way, you weill get 5 different models, and thus 5 possible different results. Statistics such as mean and stddev can be computed on these results.

  3. You can also get the clustering performance when using raw image data and random CNN by

    $ th train.lua -dataset USPS -eta 0.9 -updateCNN 0
  4. You can also change other hyper parameters for model training, such as K_s, K_c, number of epochs in each partial unrolled period, etc.

Datasets

We upload six small datasets: COIL-20, USPS, MNIST-test, CMU-PIE, FRGC, UMist. The other large datasets, COIL-100, MNIST-full and YTF can be found in my google drive here.

Train on your own datasets

Alternatively, you can train the model on your own dataset. As preparations, you need:

  1. Create a hdf5 file with size of NxCxHxW, where N is the total number of images, C is the number of channels, H is the height of image, and W the width of image. Then move it to datasets/dataset_name/data4torch.h5

  2. Create a lua file to define the network architecture for your dataset. Put it in models_def/dataset_name.lua.

  3. Afterwards, you can run train.lua by specifying the dataset name as your own dataset. That's it!

Compared Approaches

We upload the code for the compared approaches in matlab folder. Please refer to the original paper for details and cite them properly. In this foler, we also attach the evaluation code for two metric: normalized mutual information (NMI) and clustering accuracy (AC).

Q&A

You are welcome to send message to (jw2yang at vt.edu) if you have any issue on this code.

Owner
Jianwei Yang
Senior Researcher @ Microsoft
Jianwei Yang
Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks.

Heterogeneous Graph Benchmark Revisiting, benchmarking, and refining Heterogeneous Graph Neural Networks. Roadmap We organize our repo by task, and on

THUDM 176 Dec 17, 2022
A package for "Procedural Content Generation via Reinforcement Learning" OpenAI Gym interface.

Readme: Illuminating Diverse Neural Cellular Automata for Level Generation This is the codebase used to generate the results presented in the paper av

Sam Earle 27 Jan 05, 2023
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
This repository includes different versions of the prescribed-time controller as Simulink blocks and MATLAB script codes for engineering applications.

Prescribed-time Control Prescribed-time control (PTC) blocks in Simulink environment, MATLAB R2020b. For more theoretical details, refer to the papers

Amir Shakouri 1 Mar 11, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
PyTorch code for Composing Partial Differential Equations with Physics-Aware Neural Networks

FInite volume Neural Network (FINN) This repository contains the PyTorch code for models, training, and testing, and Python code for data generation t

Cognitive Modeling 20 Dec 18, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Habitat-Matterport 3D Dataset (HM3D) The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000

Meta Research 62 Dec 27, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Implementation of Bagging and AdaBoost Algorithm

Bagging-and-AdaBoost Implementation of Bagging and AdaBoost Algorithm Dataset Red Wine Quality Data Sets For simplicity, we will have 2 classes of win

Zechen Ma 1 Nov 01, 2021
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
Caffe: a fast open framework for deep learning.

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by Berkeley AI Research (BAIR)/The Berke

Berkeley Vision and Learning Center 33k Dec 28, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
Deep Reinforcement Learning with pytorch & visdom

Deep Reinforcement Learning with pytorch & visdom Sample testings of trained agents (DQN on Breakout, A3C on Pong, DoubleDQN on CartPole, continuous A

Jingwei Zhang 783 Jan 04, 2023