Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Overview

Joint Unsupervised Learning (JULE) of Deep Representations and Image Clusters.

Overview

This project is a Torch implementation for our CVPR 2016 paper, which performs jointly unsupervised learning of deep CNN and image clusters. The intuition behind this is that better image representation will facilitate clustering, while better clustering results will help representation learning. Given a unlabeled dataset, it will iteratively learn CNN parameters unsupervisedly and cluster images.

Disclaimer

This is a torch version reimplementation to the code used in our CVPR paper. There is a slight difference between the code used to report the results in our paper. The Caffe version code can be found here.

License

This code is released under the MIT License (refer to the LICENSE file for details).

Citation

If you find our code is useful in your researches, please consider citing:

@inproceedings{yangCVPR2016joint,
    Author = {Yang, Jianwei and Parikh, Devi and Batra, Dhruv},
    Title = {Joint Unsupervised Learning of Deep Representations and Image Clusters},
    Booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    Year = {2016}
}

Dependencies

  1. Torch. Install Torch by:

    $ curl -s https://raw.githubusercontent.com/torch/ezinstall/master/install-deps | bash
    $ git clone https://github.com/torch/distro.git ~/torch --recursive
    $ cd ~/torch; 
    $ ./install.sh      # and enter "yes" at the end to modify your bashrc
    $ source ~/.bashrc

    After installing torch, you may also need install some packages using LuaRocks:

    $ luarocks install nn
    $ luarocks install image 

    It is preferred to run the code on GPU. Thus you need to install cunn:

    $ luarocks install cunn
  2. lua-knn. It is used to compute the distance between neighbor samples. Go into the folder, and then compile it with:

    $ luarocks make

Typically, you can run our code after installing the above two packages. Please let me know if error occurs.

Installation Using Nvidia-Docker

  1. Run docker build -t .
  2. Run nvidia-docker run -it /bin/bash

Train model

  1. It is very simple to run the code for training model. For example, if you want to train on USPS dataset, you can run:

    $ th train.lua -dataset USPS -eta 0.9

    Note that it runs on fast mode by default. You can change it to regular mode by setting "-use_fast 0". In the above command, eta is the unfolding rate. For face dataset, we recommand 0.2, while for other datasets, it is set to 0.9 to save training time. During training, you will see the normalize mutual information (NMI) for the clustering results.

  2. You can train multiple models in parallel by:

    $ th train.lua -dataset USPS -eta 0.9 -num_nets 5

    By this way, you weill get 5 different models, and thus 5 possible different results. Statistics such as mean and stddev can be computed on these results.

  3. You can also get the clustering performance when using raw image data and random CNN by

    $ th train.lua -dataset USPS -eta 0.9 -updateCNN 0
  4. You can also change other hyper parameters for model training, such as K_s, K_c, number of epochs in each partial unrolled period, etc.

Datasets

We upload six small datasets: COIL-20, USPS, MNIST-test, CMU-PIE, FRGC, UMist. The other large datasets, COIL-100, MNIST-full and YTF can be found in my google drive here.

Train on your own datasets

Alternatively, you can train the model on your own dataset. As preparations, you need:

  1. Create a hdf5 file with size of NxCxHxW, where N is the total number of images, C is the number of channels, H is the height of image, and W the width of image. Then move it to datasets/dataset_name/data4torch.h5

  2. Create a lua file to define the network architecture for your dataset. Put it in models_def/dataset_name.lua.

  3. Afterwards, you can run train.lua by specifying the dataset name as your own dataset. That's it!

Compared Approaches

We upload the code for the compared approaches in matlab folder. Please refer to the original paper for details and cite them properly. In this foler, we also attach the evaluation code for two metric: normalized mutual information (NMI) and clustering accuracy (AC).

Q&A

You are welcome to send message to (jw2yang at vt.edu) if you have any issue on this code.

Owner
Jianwei Yang
Senior Researcher @ Microsoft
Jianwei Yang
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
TensorFlow-based neural network library

Sonnet Documentation | Examples Sonnet is a library built on top of TensorFlow 2 designed to provide simple, composable abstractions for machine learn

DeepMind 9.5k Jan 07, 2023
Türkiye Canlı Mobese Görüntülerinde Profesyonel Nesne Takip Sistemi

Türkiye Mobese Görüntü Takip Türkiye Mobese görüntülerinde OPENCV ve Yolo ile takip sistemi Multiple Object Tracking System in Turkish Mobese with OPE

15 Dec 22, 2022
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
DeepFashion2 is a comprehensive fashion dataset.

DeepFashion2 Dataset DeepFashion2 is a comprehensive fashion dataset. It contains 491K diverse images of 13 popular clothing categories from both comm

switchnorm 1.8k Jan 07, 2023
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Generated Images"

Reverse_Engineering_GMs Official Pytorch implementation of paper "Reverse Engineering of Generative Models: Inferring Model Hyperparameters from Gener

100 Dec 18, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation

SUCP Leveraging Social Influence based on Users Activity Centers for Point-of-Interest Recommendation () Direct Friends (i.e., users who follow each o

Kosar 8 Nov 26, 2022
AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning

AutoPentest-DRL: Automated Penetration Testing Using Deep Reinforcement Learning AutoPentest-DRL is an automated penetration testing framework based o

Cyber Range Organization and Design Chair 217 Jan 01, 2023
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
A keras-based real-time model for medical image segmentation (CFPNet-M)

CFPNet-M: A Light-Weight Encoder-Decoder Based Network for Multimodal Biomedical Image Real-Time Segmentation This repository contains the implementat

268 Nov 27, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Code release for ICCV 2021 paper "Anticipative Video Transformer"

Anticipative Video Transformer Ranked first in the Action Anticipation task of the CVPR 2021 EPIC-Kitchens Challenge! (entry: AVT-FB-UT) [project page

Facebook Research 123 Dec 13, 2022
A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maximum bidding

Business Problem A commany has recently introduced a new type of bidding, the average bidding, as an alternative to the bid given to the current maxim

Kübra Bilinmiş 1 Jan 15, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022