A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

Related tags

Deep Learningjie
Overview

jie

jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model.

The codename is a tribute to the Chinese homophones:

  • 结 (jié) : a knot, a nod to the mysterious and often entangled structures of DNA
  • 解 (jiĕ) : to solve, to untie, our bid to uncover these structures amid noise and uncertainty
  • 姐 (jiĕ) : sister, our ability to resolve tightly paired replicated chromatids

Installation

Step 1 - Clone this repository:

git clone https://github.com/b2jia/jie.git
cd jie

Step 2 - Create a new conda environment and install dependencies:

conda create --name jie -f environment.yml
conda activate jie

Step 3 - Install jie:

pip install -e .

To test, run:

python -W ignore test/test_jie.py

Usage

jie is an exposition of chromatin tracing using polymer physics. The main function of this package is to illustrate the utility and power of spatial genome alignment.

jie is NOT an all-purpose spatial genome aligner. Chromatin imaging is a nascent field and data collection is still being standardized. This aligner may not be compatible with different imaging protocols and data formats, among other variables.

We provide a vignette under jie/jupyter/, with emphasis on inspectability. This walks through the intuition of our spatial genome alignment and polymer fiber karyotyping routines:

00-spatial-genome-alignment-walk-thru.ipynb

We also provide a series of Jupyter notebooks (jie/jupyter/), with emphasis on reproducibility. This reproduces figures from our accompanying manuscript:

01-seqFISH-plus-mouse-ESC-spatial-genome-alignment.ipynb
02-seqFISH-plus-mouse-ESC-polymer-fiber-karyotyping.ipynb
03-seqFISH-plus-mouse-brain-spatial-genome-alignment.ipynb
04-seqFISH-plus-mouse-brain-polymer-fiber-karyotyping.ipynb
05-bench-mark-spatial-genome-agignment-against-chromatin-tracing-algorithm.ipynb

A command-line tool forthcoming.

Motivation

Multiplexed DNA-FISH is a powerful imaging technology that enables us to peer directly at the spatial location of genes inside the nucleus. Each gene appears as tiny dot under imaging.

Pivotally, figuring out which dots are physically linked would trace out the structure of chromosomes. Unfortunately, imaging is noisy, and single-cell biology is extremely variable. The two confound each other, making chromatin tracing prohibitively difficult!

For instance, in a diploid cell line with two copies of a gene we expect to see two spots. But what happens when we see:

  • Extra signals:
    • Is it noise?
      • Off-target labeling: The FISH probes might inadvertently label an off-target gene
    • Or is it biological variation?
      • Aneuploidy: A cell (ie. cancerous cell) may have more than one copy of a gene
      • Cell cycle: When a cell gets ready to divide, it duplicates its genes
  • Missing signals:
    • Is it noise?
      • Poor probe labeling: The FISH probes never labeled the intended target gene
    • Or is it biological variation?
      • Copy Number Variation: A cell may have a gene deletion

If true signal and noise are indistinguishable, how do we know we are selecting true signals during chromatin tracing? It is not obvious which spots should be connected as part of a chromatin fiber. This dilemma was first aptly characterized by Ross et al. (https://journals.aps.org/pre/abstract/10.1103/PhysRevE.86.011918), which is nothing short of prescient...!

jie is, conceptually, a spatial genome aligner that disambiguates spot selection by checking each imaged signal against a reference polymer physics model of chromatin. It relies on the key insight that the spatial separation between two genes should be congruent with its genomic separation.

It makes no assumptions about the expected copy number of a gene, and when it traces chromatin it does so instead by evaluating the physical likelihood of the chromatin fiber. In doing so, we can uncover copy number variations and even sister chromatids from multiplexed DNA-FISH imaging data.

Citation

Contact

Author: Bojing (Blair) Jia
Email: b2jia at eng dot ucsd dot edu
Position: MD-PhD Student, Ren Lab

For other work related to single-cell biology, 3D genome, and chromatin imaging, please visit Prof. Bing Ren's website: http://renlab.sdsc.edu/

Owner
Bojing Jia
How do we better describe the world around us?
Bojing Jia
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Learning Calibrated-Guidance for Object Detection in Aerial Images

Learning Calibrated-Guidance for Object Detection in Aerial Images arxiv We propose a simple yet effective Calibrated-Guidance (CG) scheme to enhance

51 Sep 22, 2022
RL and distillation in CARLA using a factorized world model

World on Rails Learning to drive from a world on rails Dian Chen, Vladlen Koltun, Philipp Krähenbühl, arXiv techical report (arXiv 2105.00636) This re

Dian Chen 131 Dec 16, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Official pytorch implementation of the IrwGAN for unaligned image-to-image translation

IrwGAN (ICCV2021) Unaligned Image-to-Image Translation by Learning to Reweight [Update] 12/15/2021 All dataset are released, trained models and genera

37 Nov 09, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
the official code for ICRA 2021 Paper: "Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation"

G2S This is the official code for ICRA 2021 Paper: Multimodal Scale Consistency and Awareness for Monocular Self-Supervised Depth Estimation by Hemang

NeurAI 4 Jul 27, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
[CVPR 2021] Region-aware Adaptive Instance Normalization for Image Harmonization

RainNet — Official Pytorch Implementation Region-aware Adaptive Instance Normalization for Image Harmonization Jun Ling, Han Xue, Li Song*, Rong Xie,

130 Dec 11, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

EmbedSeg Introduction This repository hosts the version of the code used for the preprint Embedding-based Instance Segmentation of Microscopy Images.

JugLab 88 Dec 25, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023