source code the paper Fast and Robust Iterative Closet Point.

Overview

Fast-Robust-ICP

This repository includes the source code the paper Fast and Robust Iterative Closet Point.

Authors: Juyong Zhang, Yuxin Yao, Bailin Deng.

This code is protected under patent. It can be only used for research purposes. If you are interested in business purposes/for-profit use, please contact Juyong Zhang (the author, email: [email protected]).

This code was written by Yuxin Yao. If you have questions, please contact [email protected].

Compilation

The code is compiled using CMake and requires Eigen. It has been tested on Ubuntu 16.04 with gcc 5.4.0 and on Windows with Visual Studio 2015.

Follow the following steps to compile the code:

  1. Make sure Eigen is installed. We recommend version 3.3+.

    • Download Eigen from eigen.tuxfamily.org and extract it into a folder 'eigen' within the 'include' folder. Make sure the files 'include/eigen/Eigen/Dense' and 'include/eigen/unsupported/Eigen/MatrixFunctions' can be found
    • Alternatively: On Ubuntu, use the command "apt-get install libeigen3-dev" to install Eigen.
  2. Create a build folder 'build' within the root directory of the code

  3. Run cmake to generate the build files inside the build folder, and compile the source code:

    • On linux, run the following commands within the build folder:
    $ cmake -DCMAKE_BUILD_TYPE=Release ..
    $ make
    
    • On windows, use the cmake GUI to generate a visual studio solution file, and build the solution.
  4. Afterwards, there should be an exectuable file 'FRICP' generated.

Usage

The program is run with four input parameters:

  1. an input file storing the source point cloud;
  2. an input file storing the target point cloud;
  3. an output path storing the registered source point cloud and transformation;
  4. registration method:
0: ICP
1: AA-ICP
2: Ours (Fast ICP)
3: Ours (Robust ICP)
4: ICP Point-to-plane
5: Our (Robust ICP point-to-plane)
6: Sparse ICP
7: Sparse ICP point-to-plane

You can ignore the last parameter, in which case Ours (Robust ICP) will be used by default.

Example:

$ ./FRICP ./data/target.ply ./data/source.ply ./data/res/ 3

But obj and ply (Non-binary encoding) files are supported.

Initialization support

If you have an initial transformation that can be applied on the input source model to roughly align with the input target model, you can set use_init=true and set file_init to the initial file name in main.cpp . The format of the initial transformation is a 4x4 matrix([R, t; 0, 1]), where R is a 3x3 rotation matrix and t is a 3x1 translation vector. These numbers are stored in 4 rows, and separated by spaces in each row. This format is the same as the output transformation of this code. It is worth mentioning that this code will align the center of gravity of the initial source and target models by default before starting the registration process, but this operation will be no longer used when the initial transformation is provided. In our experiment, we directly use the output file of transformation matrix generated by Super4PCS as the initial file.

Citation

Please cite the following papers if it helps your research:

@article{zhang2021fast,
  author={Juyong Zhang and Yuxin Yao and Bailin Deng},
  title={Fast and Robust Iterative Closest Point}, 
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  year={2021},
  volume={},
  number={},
  pages={1-1}}

Acknowledgements

The code is adapted from the Sparse ICP implementation released by the authors.

Owner
yaoyuxin
yaoyuxin
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Self-training with Weak Supervision (NAACL 2021)

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Microsoft 148 Nov 20, 2022
A python-image-classification web application project, written in Python and served through the Flask Microframework

A python-image-classification web application project, written in Python and served through the Flask Microframework. This Project implements the VGG16 covolutional neural network, through Keras and

Gerald Maduabuchi 19 Dec 12, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
StyleGAN2-ADA - Official PyTorch implementation

Abstract: Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmenta

NVIDIA Research Projects 3.2k Dec 30, 2022
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
A demo of how to use JAX to create a simple gravity simulation

JAX Gravity This repo contains a demo of how to use JAX to create a simple gravity simulation. It uses JAX's experimental ode package to solve the dif

Cristian Garcia 16 Sep 22, 2022
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
FedScale: Benchmarking Model and System Performance of Federated Learning

FedScale: Benchmarking Model and System Performance of Federated Learning (Paper) This repository contains scripts and instructions of building FedSca

268 Jan 01, 2023
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023