Official Pytorch implementation of RePOSE (ICCV2021)

Related tags

Deep LearningRePOSE
Overview

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link]

overview

Abstract

We present RePOSE, a fast iterative refinement method for 6D object pose estimation. Prior methods perform refinement by feeding zoomed-in input and rendered RGB images into a CNN and directly regressing an update of a refined pose. Their runtime is slow due to the computational cost of CNN, which is especially prominent in multiple-object pose refinement. To overcome this problem, RePOSE leverages image rendering for fast feature extraction using a 3D model with a learnable texture. We call this deep texture rendering, which uses a shallow multi-layer perceptron to directly regress a view-invariant image representation of an object. Furthermore, we utilize differentiable Levenberg-Marquardt (LM) optimization to refine a pose fast and accurately by minimizing the feature-metric error between the input and rendered image representations without the need of zooming in. These image representations are trained such that differentiable LM optimization converges within few iterations. Consequently, RePOSE runs at 92 FPS and achieves state-of-the-art accuracy of 51.6% on the Occlusion LineMOD dataset - a 4.1% absolute improvement over the prior art, and comparable result on the YCB-Video dataset with a much faster runtime.

Prerequisites

  • Python >= 3.6
  • Pytorch == 1.9.0
  • Torchvision == 0.10.0
  • CUDA == 10.1

Downloads

Installation

  1. Set up the python environment:
    $ pip install torch==1.9.0 torchvision==0.10.0
    $ pip install Cython==0.29.17
    $ sudo apt-get install libglfw3-dev libglfw3
    $ pip install -r requirements.txt
    
    # Install Differentiable Renderer
    $ cd renderer
    $ python3 setup.py install
    
  2. Compile cuda extensions under lib/csrc:
    ROOT=/path/to/RePOSE
    cd $ROOT/lib/csrc
    export CUDA_HOME="/usr/local/cuda-10.1"
    cd ../ransac_voting
    python setup.py build_ext --inplace
    cd ../camera_jacobian
    python setup.py build_ext --inplace
    cd ../nn
    python setup.py build_ext --inplace
    cd ../fps
    python setup.py
    
  3. Set up datasets:
    $ ROOT=/path/to/RePOSE
    $ cd $ROOT/data
    
    $ ln -s /path/to/linemod linemod
    $ ln -s /path/to/linemod_orig linemod_orig
    $ ln -s /path/to/occlusion_linemod occlusion_linemod
    
    $ cd $ROOT/data/model/
    $ unzip pretrained_models.zip
    
    $ cd $ROOT/cache/LinemodTest
    $ unzip ape.zip benchvise.zip .... phone.zip
    $ cd $ROOT/cache/LinemodOccTest
    $ unzip ape.zip can.zip .... holepuncher.zip
    

Testing

We have 13 categories (ape, benchvise, cam, can, cat, driller, duck, eggbox, glue, holepuncher, iron, lamp, phone) on the LineMOD dataset and 8 categories (ape, can, cat, driller, duck, eggbox, glue, holepuncher) on the Occlusion LineMOD dataset. Please choose the one category you like (replace ape with another category) and perform testing.

Evaluate the ADD(-S) score

  1. Generate the annotation data:
    python run.py --type linemod cls_type ape model ape
    
  2. Test:
    # Test on the LineMOD dataset
    $ python run.py --type evaluate --cfg_file configs/linemod.yaml cls_type ape model ape
    
    # Test on the Occlusion LineMOD dataset
    $ python run.py --type evaluate --cfg_file configs/linemod.yaml test.dataset LinemodOccTest cls_type ape model ape
    

Visualization

  1. Generate the annotation data:
    python run.py --type linemod cls_type ape model ape
    
  2. Visualize:
    # Visualize the results of the LineMOD dataset
    python run.py --type visualize --cfg_file configs/linemod.yaml cls_type ape model ape
    
    # Visualize the results of the Occlusion LineMOD dataset
    python run.py --type visualize --cfg_file configs/linemod.yaml test.dataset LinemodOccTest cls_type ape model ape
    

Citation

@InProceedings{Iwase_2021_ICCV,
    author    = {Iwase, Shun and Liu, Xingyu and Khirodkar, Rawal and Yokota, Rio and Kitani, Kris M.},
    title     = {RePOSE: Fast 6D Object Pose Refinement via Deep Texture Rendering},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {3303-3312}
}

Acknowledgement

Our code is largely based on clean-pvnet and our rendering code is based on neural_renderer. Thank you so much for making these codes publicly available!

Contact

If you have any questions about the paper and implementation, please feel free to email me ([email protected])! Thank you!

Owner
Shun Iwase
Carnegie Mellon University, Robotics Institute
Shun Iwase
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
Official repository of the paper Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

SMDD-Synthetic-Face-Morphing-Attack-Detection-Development-dataset Official repository of the paper Privacy-friendly Synthetic Data for the Development

10 Dec 12, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Pytorch implementation of set transformer

set_transformer Official PyTorch implementation of the paper Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks .

Juho Lee 410 Jan 06, 2023
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
deep learning model that learns to code with drawing in the Processing language

sketchnet sketchnet - processing code generator can we teach a computer to draw pictures with code. We use Processing and java/jruby code paired with

41 Dec 12, 2022
Code for our TKDE paper "Understanding WeChat User Preferences and “Wow” Diffusion"

wechat-wow-analysis Understanding WeChat User Preferences and “Wow” Diffusion. Fanjin Zhang, Jie Tang, Xueyi Liu, Zhenyu Hou, Yuxiao Dong, Jing Zhang,

18 Sep 16, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

AugMax: Adversarial Composition of Random Augmentations for Robust Training Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Anima Anandkumar, an

VITA 112 Nov 07, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022