Crosslingual Segmental Language Model

Related tags

Deep LearningXLSLM
Overview

Crosslingual Segmental Language Model

This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely low-resource languages (2021, C.M. Downey, Shannon Drizin, Levon Haroutunian, and Shivin Thukral). The code here is a modified version of the repository from the original MSLM paper. The mslm package can be used to train and use Segmental Language Models.

In this repository, we additionally make available our preparation of the AmericasNLP 2021 multilingual dataset (see Data/AmericasNLP) and the target K'iche' data (Data/GlobalClassroom).

Paper Results

The results from the accompanying paper can be found in the Output directory. *.csv files include statistics from the training run, *.out contain the model output for the entire corpus, *.score contain the segmentation scores of the model output.

The results from the October 2021 pre-print (which we will refer to as Experiment Set A) are reproducible on commit 2b89575. We will consider this the official commit of the October 2021 pre-print.

Usage

The top-level scripts for training and experimentation can be found in RunScripts. Almost all functionality is run through the __main__.py script in the mslm package, which can either train or evaluate/use a model. The PyTorch modules for building SLMs can be found in mslm.segmental_lm, modules for the span-masking Transformer are in mslm.segmental_transformer, and modules for sequence lattice-based computations are in mslm.lattice. The main script takes in a configuration object to set most parameters for model training and use (see mslm.mslm_config). For information on the arguments to the main script:

python -m mslm --help

Environment setup

pip install -r requirements.txt

This code requires Python >= 3.6

Training

./RunScripts/run_mslm.sh 
    
     
     

     
    
   

or

python -m mslm --input_file 
   
     \
    --model_path 
    
      \
    --mode train \
    --config_file 
     
       \
    --dev_file 
      
        \
    [--preexisting]

      
     
    
   

Evaluation

./RunScripts/eval_mslm.sh 
    
     
      
      

      
     
    
   

Where is a text file containing all of the words from the training set

Owner
C.M. Downey
PhD Student in Computational Linguistics / NLP
C.M. Downey
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
Baleen: Robust Multi-Hop Reasoning at Scale via Condensed Retrieval (NeurIPS'21)

Baleen Baleen is a state-of-the-art model for multi-hop reasoning, enabling scalable multi-hop search over massive collections for knowledge-intensive

Stanford Future Data Systems 22 Dec 05, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Train DeepLab for Semantic Image Segmentation

Train DeepLab for Semantic Image Segmentation Martin Kersner, [email protected]

Martin Kersner 172 Dec 14, 2022
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
On Evaluation Metrics for Graph Generative Models

On Evaluation Metrics for Graph Generative Models Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor This is the offic

13 Jan 07, 2023
Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection

Structure Information is the Key: Self-Attention RoI Feature Extractor in 3D Object Detection abstract:Unlike 2D object detection where all RoI featur

DK. Zhang 2 Oct 07, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
Auxiliary data to the CHIIR paper Searching to Learn with Instructional Scaffolding

Searching to Learn with Instructional Scaffolding This is the data and analysis code for the paper "Searching to Learn with Instructional Scaffolding"

Arthur Câmara 2 Mar 02, 2022
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
pytorch implementation of openpose including Hand and Body Pose Estimation.

pytorch-openpose pytorch implementation of openpose including Body and Hand Pose Estimation, and the pytorch model is directly converted from openpose

Hzzone 1.4k Jan 07, 2023