On Evaluation Metrics for Graph Generative Models

Overview

On Evaluation Metrics for Graph Generative Models

Authors: Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, Graham Taylor

This is the official repository for the paper On Evaluation Metrics for Graph Generative Models (hyperlink TBD). Our evaluation metrics enable the efficient computation of the distance between two sets of graphs regardless of domain. In addition, they are more expressive than previous metrics and easily incorporate continuous node and edge features in evaluation. If you're primarily interested in using our metrics in your work, please see evaluation/ for a more lightweight setup and installation and Evaluation_examples.ipynb for examples on how to utilize our code. The remainder of this README describes how to recreate our results which introduces additional dependencies.

Table of Contents

Requirements and installation

The main requirements are:

  • Python 3.7
  • PyTorch 1.8.1
  • DGL 0.6.1
pip install -r requirements.txt

Following that, install an appropriate version of DGL 0.6.1 for your system and download the proteins and ego datasets by running ./download_datasets.sh.

Reproducing main results

The arguments of our scripts are described in config.py.

Permutation experiments

Below, examples to run the scripts to run certain experiments are shown. In general, experiments can be run as:

python main.py --permutation_type={permutation type} --dataset={dataset}\
{feature_extractor} {feature_extractor_args}

For example, to run the mixing random graphs experiment on the proteins dataset using random-GNN-based metrics for a single random seed:

python main.py --permutation_type=mixing-random --dataset=proteins\
gnn

The hyperparameters of the GNN are set to our recommendations by default, however, they are easily changed by additional flags. To run the same experiment using the degree MMD metric:

python main.py --permutation_type=mixing-random --dataset=proteins\
mmd-structure --statistic=degree

Rank correlations are automatically computed and printed at the end of each experiment, and results are stored in experiment_results/. Recreating our results requires running variations of the above commands thousands of times. To generate these commands and store them in a bash script automatically, run python create_bash_script.py.

Pretraining GNNs

To pretrain a GNN for use in our permutation experiments, run python GIN_train.py, and see GIN_train.py for tweakable hyperparameters. Alternatively, the pretrained models used in our experiments can be downloaded by running ./download_pretrained_models.sh. Once you have a pretrained model, the permutation experiments can be ran using:

python main.py --permutation_type={permutation type} --dataset={dataset}\
gnn --use_pretrained {feature_extractor_args}

Generating graphs

Some of our experiments use graphs generated by GRAN. To find instructions on training and generating graphs using GRAN, please see the official GRAN repository. Alternatively, the graphs generated by GRAN used in our experiments can be downloaded by running ./download_gran_graphs.sh.

Visualization

All code for visualizing results and creating tables is found in data_visualization.ipynb.

License

We release our code under the MIT license.

Citation

@inproceedings{thompson2022evaluation,
  title={On Evaluation Metrics for Graph Generative Models},
  author={Thompson, Rylee, and Knyazev, Boris and Ghalebi, Elahe and Kim, Jungtaek, and Taylor, Graham W},
booktitle={International Conference on Learning Representations},
  year={2022}  
}
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Detecting Potentially Harmful and Protective Suicide-related Content on Twitter

TwitterSuicideML Scripts for reproducing the Machine Learning analysis of the paper: Detecting Potentially Harmful and Protective Suicide-related Cont

3 Oct 17, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
Easy Parallel Library (EPL) is a general and efficient deep learning framework for distributed model training.

English | 简体中文 Easy Parallel Library Overview Easy Parallel Library (EPL) is a general and efficient library for distributed model training. Usability

Alibaba 185 Dec 21, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Project of 'TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement '

TBEFN: A Two-branch Exposure-fusion Network for Low-light Image Enhancement Codes for TMM20 paper "TBEFN: A Two-branch Exposure-fusion Network for Low

KUN LU 31 Nov 06, 2022
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch

pytorch-spynet This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 269 Jan 02, 2023