Pyeventbus: a publish/subscribe event bus

Overview

pyeventbus

https://travis-ci.org/n89nanda/pyeventbus.svg?branch=master

pyeventbus is a publish/subscribe event bus for Python 2.7.

  • simplifies the communication between python classes
  • decouples event senders and receivers
  • performs well threads, greenlets, queues and concurrent processes
  • avoids complex and error-prone dependencies and life cycle issues
  • makes code simpler
  • has advanced features like delivery threads, workers and spawning different processes, etc.
  • is tiny (3KB archive)

pyeventbus in 3 steps:

  1. Define events:

    class MessageEvent:
        # Additional fields and methods if needed
        def __init__(self):
            pass
    
  2. Prepare subscribers: Declare and annotate your subscribing method, optionally specify a thread mode:

    from pyeventbus import *
    
    @subscribe(onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    

    Register your subscriber. For example, if you want to register a class in Python:

    from pyeventbus import *
    
    class MyClass:
        def __init__(self):
            pass
    
        def register(self, myclass):
            PyBus.Instance().register(myclass, self.__class__.__name__)
    
    # then during initilization
    
    myclass = MyClass()
    myclass.register(myclass)
    
  3. Post events:

    from pyeventbus import *
    
    class MyClass:
        def __init__(self):
            pass
    
        def register(self, myclass):
            PyBus.Instance().register(myclass, self.__class__.__name__)
    
        def postingAnEvent(self):
            PyBus.Instance().post(MessageEvent())
    
     myclass = MyClass()
     myclass.register(myclass)
     myclass.postingAnEvent()
    

Modes: pyeventbus can run the subscribing methods in 5 different modes

  1. POSTING:

    Runs the method in the same thread as posted. For example, if an event is posted from main thread, the subscribing method also runs in the main thread. If an event is posted in a seperate thread, the subscribing method runs in the same seperate method
    
    This is the default mode, if no mode has been provided::
    
    @subscribe(threadMode = Mode.POSTING, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  2. PARALLEL:

    Runs the method in a seperate python thread::
    
    @subscribe(threadMode = Mode.PARALLEL, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  3. GREENLET:

    Runs the method in a greenlet using gevent library::
    
    @subscribe(threadMode = Mode.GREENLET, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  4. BACKGROUND:

    Adds the subscribing methods to a queue which is executed by workers::
    
    @subscribe(threadMode = Mode.BACKGROUND, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    
  1. CONCURRENT:

    Runs the method in a seperate python process::
    
    @subscribe(threadMode = Mode.CONCURRENT, onEvent=MessageEvent)
    def func(self, event):
        # Do something
        pass
    

Adding pyeventbus to your project:

pip install pyeventbus

Example:

git clone https://github.com/n89nanda/pyeventbus.git

cd pyeventbus

virtualenv venv

source venv/bin/activate

pip install pyeventbus

python example.py

Benchmarks and Performance:

Refer /pyeventbus/tests/benchmarks.txt for performance benchmarks on CPU, I/O and networks heavy tasks.

Run /pyeventbus/tests/test.sh to generate the same benchmarks.

Performance comparison between all the modes with Python and Cython

alternate text

Inspiration

Inspired by Eventbus from greenrobot: https://github.com/greenrobot/EventBus
You might also like...
Code for the paper
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

CVPRW 2021: How to calibrate your event camera
CVPRW 2021: How to calibrate your event camera

E2Calib: How to Calibrate Your Event Camera This repository contains code that implements video reconstruction from event data for calibration as desc

Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)
Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras (ICCV 2021)

N-ImageNet: Towards Robust, Fine-Grained Object Recognition with Event Cameras Official PyTorch implementation of N-ImageNet: Towards Robust, Fine-Gra

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.
Weakly Supervised Dense Event Captioning in Videos, i.e. generating multiple sentence descriptions for a video in a weakly-supervised manner.

WSDEC This is the official repo for our NeurIPS paper Weakly Supervised Dense Event Captioning in Videos. Description Repo directories ./: global conf

Comments
  • Same method name for multiple subscribers bug

    Same method name for multiple subscribers bug

    Please see the code below. To summarize:

    • Define one event
    • Define two subscriber listening for the event above. Each subscriber has a listener method with the name on_event
    • Each of the subscriber classes above defines an instance field, but with unique name (self.something in the first class, self.something2 in the second class)
    • Define another class that posts an event

    Run this scenario and get the error below:

    Exception in thread thread-on_event:
    Traceback (most recent call last):
      File "C:\Anaconda2\envs\python\lib\threading.py", line 801, in __bootstrap_inner
        self.run()
      File "C:\Anaconda2\envs\python\lib\site-packages\pyeventbus\pyeventbus.py", line 112, in run
        self.method(self.subscriber, self.event)
      File "C:/FractureID/projects/python/ui/spectraqc/PyEventBusBug.py", line 16, in on_event
        print (self.something)
    AttributeError: Subscriber2 instance has no attribute 'something'
    
    Exception in thread thread-on_event:
    Traceback (most recent call last):
      File "C:\Anaconda2\envs\python\lib\threading.py", line 801, in __bootstrap_inner
        self.run()
      File "C:\Anaconda2\envs\python\lib\site-packages\pyeventbus\pyeventbus.py", line 112, in run
        self.method(self.subscriber, self.event)
      File "C:/FractureID/projects/python/ui/spectraqc/PyEventBusBug.py", line 26, in on_event
        print (self.something_else)
    AttributeError: Subscriber1 instance has no attribute 'something_else'
    
    

    It complains about the variable in class two not having the attribute in the first class and the other way around.

    If I change on of the on_event to something else like on_event2 then the issue is gone.

    from pyeventbus import *
    
    
    class SomeEvent:
        def __init__(self):
            pass
    
    
    class Subscriber1:
        def __init__(self):
            self.something = 'First subscriber'
            PyBus.Instance().register(self, self.__class__.__name__)
    
        @subscribe(threadMode=Mode.PARALLEL, onEvent=SomeEvent)
        def on_event(self, event):
            print (self.something)
    
    
    class Subscriber2:
        def __init__(self):
            self.something_else = 'Second subscriber'
            PyBus.Instance().register(self, self.__class__.__name__)
    
        @subscribe(threadMode=Mode.PARALLEL, onEvent=SomeEvent)
        def on_event(self, event):
            print (self.something_else)
    
    
    class PyEventBusBug:
    
        def __init__(self):
            Subscriber1()
            Subscriber2()
            PyBus.Instance().post(SomeEvent())
    
    
    if __name__ == "__main__":
        PyEventBusBug()
    
    
    bug 
    opened by ddanny 0
  • Doesn't even start on Windows because 2000 threads is apparently too much

    Doesn't even start on Windows because 2000 threads is apparently too much

      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 116, in subscribe
        bus = PyBus.Instance()
      File "C:\Python27\lib\site-packages\pyeventbus\Singleton.py", line 30, in Instance
        self._instance = self._decorated()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 24, in __init__
        for worker in [lambda: self.startWorkers() for i in range(self.num_threads)]: worker()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 24, in <lambda>
        for worker in [lambda: self.startWorkers() for i in range(self.num_threads)]: worker()
      File "C:\Python27\lib\site-packages\pyeventbus\pyeventbus.py", line 30, in startWorkers
        worker.start()
      File "C:\Python27\lib\threading.py", line 736, in start
        _start_new_thread(self.__bootstrap, ())
    thread.error: can't start new thread
    

    See also: https://stackoverflow.com/a/1835043/2583080

    bug 
    opened by PawelTroka 4
Releases(0.2)
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
A Convolutional Transformer for Keyword Spotting

☢️ Audiomer ☢️ Audiomer: A Convolutional Transformer for Keyword Spotting [ arXiv ] [ Previous SOTA ] [ Model Architecture ] Results on SpeechCommands

49 Jan 27, 2022
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022
A deep learning based semantic search platform that computes similarity scores between provided query and documents

semanticsearch This is a deep learning based semantic search platform that computes similarity scores between provided query and documents. Documents

1 Nov 30, 2021
This repository contains an implementation of the Permutohedral Attention Module in Pytorch

Permutohedral_attention_module This repository contains an implementation of the Permutohedral Attention Module

Samuel JOUTARD 26 Nov 27, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows

Probabilistic-Monocular-3D-Human-Pose-Estimation-with-Normalizing-Flows This is the official implementation of the ICCV 2021 Paper "Probabilistic Mono

62 Nov 23, 2022
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
This is the official repository of the paper Stocastic bandits with groups of similar arms (NeurIPS 2021). It contains the code that was used to compute the figures and experiments of the paper.

Experiments How to reproduce experimental results of Stochastic bandits with groups of similar arms submitted paper ? Section 5 of the paper To reprod

Fabien 0 Oct 25, 2021
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
Motion planning algorithms commonly used on autonomous vehicles. (path planning + path tracking)

Overview This repository implemented some common motion planners used on autonomous vehicles, including Hybrid A* Planner Frenet Optimal Trajectory Hi

Huiming Zhou 1k Jan 09, 2023
Adversarially Learned Inference

Adversarially Learned Inference Code for the Adversarially Learned Inference paper. Compiling the paper locally From the repo's root directory, $ cd p

Mohamed Ishmael Belghazi 308 Sep 24, 2022