No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

Overview

No-Reference Image Quality Assessment Algorithms


No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference image. Since the evaluation algorithm learns the features of good quality images and scores input images, a training process is required.

Teaser


1. Target Research Papers

  1. BRISQUE: Mittal, Anish, Anush Krishna Moorthy, and Alan Conrad Bovik. "No-reference image quality assessment in the spatial domain." IEEE Transactions on Image Processing (TIP) 21.12 (2012): 4695-4708.

  2. NIQE: Mittal, Anish, Rajiv Soundararajan, and Alan C. Bovik. "Making a “completely blind” image quality analyzer." IEEE Signal Processing Letters (SPL) 20.3 (2012): 209-212.

  3. PIQE: Venkatanath, N., et al. "Blind image quality evaluation using perception based features." 2015 Twenty First National Conference on Communications (NCC). IEEE, 2015.

  4. RankIQA: Liu, Xialei, Joost Van De Weijer, and Andrew D. Bagdanov. "Rankiqa: Learning from rankings for no-reference image quality assessment." Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017.

  5. MetaIQA: Zhu, Hancheng, et al. "MetaIQA: Deep meta-learning for no-reference image quality assessment." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.


2. Dependencies

I used the following libraries in Windows 10.

python == 3.9.7

pillow == 8.4.0

tqdm == 4.62.3

pytorch == 1.10.1

torchvision == 0.11.2

opencv-python == 4.5.4.60

scipy == 1.7.1

pandas == 1.3.4

3. Quick Start

Download the pre-trained model checkpoint files.

  1. RankIQA: https://drive.google.com/drive/folders/1Y2WgNHL6vowvKA0ISGUefQiggvrCL5rl?usp=sharing

    default directory: ./RankIQA/Rank_live.caffemodel.pt

  2. MetaIQA: https://drive.google.com/drive/folders/1SCo56y9s0yB-TPcnVHqoc63TZ2ngSxPG?usp=sharing

    default directory: ./MetaIQA/metaiqa.pth

Windows User

  • Run demo1.bat & demo2.bat in the windows terminal.

Linux User

  • Run demo1.sh & demo2.sh in the linux terminal.

Check "options.py" as well. The demo files are tutorials.

The demo images are from KADID10K dataset: http://database.mmsp-kn.de/kadid-10k-database.html


4. Acknowledgements

Repositories

  1. BRISQUE(↓): https://github.com/spmallick/learnopencv/blob/master/ImageMetrics/Python/brisquequality.py
  2. NIQE(↓): https://github.com/guptapraful/niqe
  3. NIQE model parameters: https://github.com/csjunxu/Bovik_NIQE_SPL2013
  4. PIQE(↓): https://github.com/buyizhiyou/NRVQA
  5. RankIQA(↓): https://github.com/YunanZhu/Pytorch-TestRankIQA
  6. MetaIQA(↑): https://github.com/zhuhancheng/MetaIQA

Images

  1. KADID10K: http://database.mmsp-kn.de/kadid-10k-database.html

5. Author

Dae-Young Song

M.S. Student, Department of Electronics Engineering, Chungnam National University

Github: https://github.com/EadCat

Owner
Dae-Young Song
M.S. Student Majoring in Computer Vision, Department of Electronic Engineering
Dae-Young Song
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts The rapid progress in 3D scene understanding has come with growing dem

Facebook Research 182 Dec 30, 2022
Source code for models described in the paper "AudioCLIP: Extending CLIP to Image, Text and Audio" (https://arxiv.org/abs/2106.13043)

AudioCLIP Extending CLIP to Image, Text and Audio This repository contains implementation of the models described in the paper arXiv:2106.13043. This

458 Jan 02, 2023
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
Code for AutoNL on ImageNet (CVPR2020)

Neural Architecture Search for Lightweight Non-Local Networks This repository contains the code for CVPR 2020 paper Neural Architecture Search for Lig

Yingwei Li 104 Aug 31, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
Neural style in TensorFlow! 🎨

neural-style An implementation of neural style in TensorFlow. This implementation is a lot simpler than a lot of the other ones out there, thanks to T

Anish Athalye 5.5k Dec 29, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Efficient Multi Collection Style Transfer Using GAN

Proposed a new model that can make style transfer from single style image, and allow to transfer into multiple different styles in a single model.

Zhaozheng Shen 2 Jan 15, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023