No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

Overview

No-Reference Image Quality Assessment Algorithms


No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference image. Since the evaluation algorithm learns the features of good quality images and scores input images, a training process is required.

Teaser


1. Target Research Papers

  1. BRISQUE: Mittal, Anish, Anush Krishna Moorthy, and Alan Conrad Bovik. "No-reference image quality assessment in the spatial domain." IEEE Transactions on Image Processing (TIP) 21.12 (2012): 4695-4708.

  2. NIQE: Mittal, Anish, Rajiv Soundararajan, and Alan C. Bovik. "Making a “completely blind” image quality analyzer." IEEE Signal Processing Letters (SPL) 20.3 (2012): 209-212.

  3. PIQE: Venkatanath, N., et al. "Blind image quality evaluation using perception based features." 2015 Twenty First National Conference on Communications (NCC). IEEE, 2015.

  4. RankIQA: Liu, Xialei, Joost Van De Weijer, and Andrew D. Bagdanov. "Rankiqa: Learning from rankings for no-reference image quality assessment." Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017.

  5. MetaIQA: Zhu, Hancheng, et al. "MetaIQA: Deep meta-learning for no-reference image quality assessment." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.


2. Dependencies

I used the following libraries in Windows 10.

python == 3.9.7

pillow == 8.4.0

tqdm == 4.62.3

pytorch == 1.10.1

torchvision == 0.11.2

opencv-python == 4.5.4.60

scipy == 1.7.1

pandas == 1.3.4

3. Quick Start

Download the pre-trained model checkpoint files.

  1. RankIQA: https://drive.google.com/drive/folders/1Y2WgNHL6vowvKA0ISGUefQiggvrCL5rl?usp=sharing

    default directory: ./RankIQA/Rank_live.caffemodel.pt

  2. MetaIQA: https://drive.google.com/drive/folders/1SCo56y9s0yB-TPcnVHqoc63TZ2ngSxPG?usp=sharing

    default directory: ./MetaIQA/metaiqa.pth

Windows User

  • Run demo1.bat & demo2.bat in the windows terminal.

Linux User

  • Run demo1.sh & demo2.sh in the linux terminal.

Check "options.py" as well. The demo files are tutorials.

The demo images are from KADID10K dataset: http://database.mmsp-kn.de/kadid-10k-database.html


4. Acknowledgements

Repositories

  1. BRISQUE(↓): https://github.com/spmallick/learnopencv/blob/master/ImageMetrics/Python/brisquequality.py
  2. NIQE(↓): https://github.com/guptapraful/niqe
  3. NIQE model parameters: https://github.com/csjunxu/Bovik_NIQE_SPL2013
  4. PIQE(↓): https://github.com/buyizhiyou/NRVQA
  5. RankIQA(↓): https://github.com/YunanZhu/Pytorch-TestRankIQA
  6. MetaIQA(↑): https://github.com/zhuhancheng/MetaIQA

Images

  1. KADID10K: http://database.mmsp-kn.de/kadid-10k-database.html

5. Author

Dae-Young Song

M.S. Student, Department of Electronics Engineering, Chungnam National University

Github: https://github.com/EadCat

Owner
Dae-Young Song
M.S. Student Majoring in Computer Vision, Department of Electronic Engineering
Dae-Young Song
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Kernelized-HRM Jiashuo Liu, Zheyuan Hu The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the cod

Liu Jiashuo 8 Nov 20, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Go from graph data to a secure and interactive visual graph app in 15 minutes. Batteries-included self-hosting of graph data apps with Streamlit, Graphistry, RAPIDS, and more!

✔️ Linux ✔️ OS X ❌ Windows (#39) Welcome to graph-app-kit Turn your graph data into a secure and interactive visual graph app in 15 minutes! Why This

Graphistry 107 Jan 02, 2023
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
For auto aligning, cropping, and scaling HR and LR images for training image based neural networks

ImgAlign For auto aligning, cropping, and scaling HR and LR images for training image based neural networks Usage Make sure OpenCV is installed, 'pip

15 Dec 04, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
MRI reconstruction (e.g., QSM) using deep learning methods

deepMRI: Deep learning methods for MRI Authors: Yang Gao, Hongfu Sun This repo is devloped based on Pytorch (1.8 or later) and matlab (R2019a or later

Hongfu Sun 17 Dec 18, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

How to Become More Salient? Surfacing Representation Biases of the Saliency Prediction Model

Bogdan Kulynych 49 Nov 05, 2022
FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning

FEDn is an open-source, modular and ML-framework agnostic framework for Federated Machine Learning (FedML) developed and maintained by Scaleout Systems. FEDn enables highly scalable cross-silo and cr

Scaleout 75 Nov 09, 2022
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
交互式标注软件,暂定名 iann

iann 交互式标注软件,暂定名iann。 安装 按照官网介绍安装paddle。 安装其他依赖 pip install -r requirements.txt 运行 git clone https://github.com/PaddleCV-SIG/iann/ cd iann python iann

294 Dec 30, 2022
gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions

gtfs2vec This is a companion repository for a gtfs2vec - Learning GTFS Embeddings for comparing PublicTransport Offer in Microregions publication. Vis

Politechnika Wrocławska - repozytorium dla informatyków 5 Oct 10, 2022
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023