No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

Overview

No-Reference Image Quality Assessment Algorithms


No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference image. Since the evaluation algorithm learns the features of good quality images and scores input images, a training process is required.

Teaser


1. Target Research Papers

  1. BRISQUE: Mittal, Anish, Anush Krishna Moorthy, and Alan Conrad Bovik. "No-reference image quality assessment in the spatial domain." IEEE Transactions on Image Processing (TIP) 21.12 (2012): 4695-4708.

  2. NIQE: Mittal, Anish, Rajiv Soundararajan, and Alan C. Bovik. "Making a “completely blind” image quality analyzer." IEEE Signal Processing Letters (SPL) 20.3 (2012): 209-212.

  3. PIQE: Venkatanath, N., et al. "Blind image quality evaluation using perception based features." 2015 Twenty First National Conference on Communications (NCC). IEEE, 2015.

  4. RankIQA: Liu, Xialei, Joost Van De Weijer, and Andrew D. Bagdanov. "Rankiqa: Learning from rankings for no-reference image quality assessment." Proceedings of the IEEE International Conference on Computer Vision (ICCV). 2017.

  5. MetaIQA: Zhu, Hancheng, et al. "MetaIQA: Deep meta-learning for no-reference image quality assessment." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020.


2. Dependencies

I used the following libraries in Windows 10.

python == 3.9.7

pillow == 8.4.0

tqdm == 4.62.3

pytorch == 1.10.1

torchvision == 0.11.2

opencv-python == 4.5.4.60

scipy == 1.7.1

pandas == 1.3.4

3. Quick Start

Download the pre-trained model checkpoint files.

  1. RankIQA: https://drive.google.com/drive/folders/1Y2WgNHL6vowvKA0ISGUefQiggvrCL5rl?usp=sharing

    default directory: ./RankIQA/Rank_live.caffemodel.pt

  2. MetaIQA: https://drive.google.com/drive/folders/1SCo56y9s0yB-TPcnVHqoc63TZ2ngSxPG?usp=sharing

    default directory: ./MetaIQA/metaiqa.pth

Windows User

  • Run demo1.bat & demo2.bat in the windows terminal.

Linux User

  • Run demo1.sh & demo2.sh in the linux terminal.

Check "options.py" as well. The demo files are tutorials.

The demo images are from KADID10K dataset: http://database.mmsp-kn.de/kadid-10k-database.html


4. Acknowledgements

Repositories

  1. BRISQUE(↓): https://github.com/spmallick/learnopencv/blob/master/ImageMetrics/Python/brisquequality.py
  2. NIQE(↓): https://github.com/guptapraful/niqe
  3. NIQE model parameters: https://github.com/csjunxu/Bovik_NIQE_SPL2013
  4. PIQE(↓): https://github.com/buyizhiyou/NRVQA
  5. RankIQA(↓): https://github.com/YunanZhu/Pytorch-TestRankIQA
  6. MetaIQA(↑): https://github.com/zhuhancheng/MetaIQA

Images

  1. KADID10K: http://database.mmsp-kn.de/kadid-10k-database.html

5. Author

Dae-Young Song

M.S. Student, Department of Electronics Engineering, Chungnam National University

Github: https://github.com/EadCat

Owner
Dae-Young Song
M.S. Student Majoring in Computer Vision, Department of Electronic Engineering
Dae-Young Song
Advancing mathematics by guiding human intuition with AI

Advancing mathematics by guiding human intuition with AI This repo contains two colab notebooks which accompany the paper, available online at https:/

DeepMind 315 Dec 26, 2022
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Laser device for neutralizing - mosquitoes, weeds and pests

Laser device for neutralizing - mosquitoes, weeds and pests (in progress) Here I will post information for creating a laser device. A warning!! How It

Ildaron 1k Jan 02, 2023
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
Lipstick ain't enough: Beyond Color-Matching for In-the-Wild Makeup Transfer (CVPR 2021)

Table of Content Introduction Datasets Getting Started Requirements Usage Example Training & Evaluation CPM: Color-Pattern Makeup Transfer CPM is a ho

VinAI Research 248 Dec 13, 2022
Python codes for Lite Audio-Visual Speech Enhancement.

Lite Audio-Visual Speech Enhancement (Interspeech 2020) Introduction This is the PyTorch implementation of Lite Audio-Visual Speech Enhancement (LAVSE

Shang-Yi Chuang 85 Dec 01, 2022
I3-master-layout - Simple master and stack layout script

Simple master and stack layout script | ------ | ----- | | | | | Ma

Tobias S 18 Dec 05, 2022
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

Xingdong Zuo 12 Dec 02, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
official implementation for the paper "Simplifying Graph Convolutional Networks"

Simplifying Graph Convolutional Networks Updates As pointed out by #23, there was a subtle bug in our preprocessing code for the reddit dataset. After

Tianyi 727 Jan 01, 2023
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022