Tom-the-AI - A compound artificial intelligence software for Linux systems.

Overview

Tom the AI (version 0.82)

WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days.

Tom is an open source AI desktop assistant for Linux systems, built using a series of independent response modules to generate replies to any input.

Tom uses natural language processing to determine which response module is best suited to generate a response for each input, thus avoiding the need for precise syntax.

Tom the AI

By Analogy

Tom the AI is designed as a Linux alternative to software such as Apple's Siri, or Microsoft's Cortana.

Set Up

Step 1 - Update repositories:

Update apt package repositories using sudo apt update to ensure that the apt package manager has access to the latest versions of the below dependencies.

Step 2 - Install APT dependencies:

First, install python by running sudo apt install python3.9 in a terminal. Tom is tested on python 3.9, but any newer version should (probably) also work just fine.

Next, install the latest version of VLC Media player using sudo apt install vlc.

Step 3 - Download Tom:

Download Tom by cloning the GitHub repository into your home folder using git clone https://github.com/Mblizzard/Tom-the-AI.

Step 4 - Install Python dependencies:

Open a terminal inside Tom's application folder, or navigate using cd ~/Tom-the-AI/. Now run sudo pip3 install requirements.txt. Some systems may use pip in place of pip3.

Next, we need to download the required NLTK libraries by running the following code in a python shell:

>>> import nltk
>>> nltk.download('all')

Step 5 - Running Tom:

Go ahead and run python3.9 ~/Tom-the-AI/tom.py. Tom will boot up, and after a minute or so of loading, you'll be ready to go! If you feel inclined, go ahead and make a desktop launcher of this command, link Tom into your Application Menu, or create a dock shortcut.

Mission

The mission of Tom is to provide an open source compound AI for which anyone can program and contribute response modules, expanding Tom's capabilities to create a useful and entertaining artificial intelligence software.

Examples

Tom generates outputs to any input by using natural language processing to determine the most suitable response module from which to source the reply.

Give Tom natural language input, either via voice recognition or text input, for instance Hey Tom, what is petrichor?, and he'll respond in the most appropriate way. Note that the 'Hey Tom' activation phrase is only required of voice inputs.

The following is a non-exhaustive list of things you can do:

Hey Tom, I'm in an optimistic mood. I'm not sure if this is a good thing or not. Emotions (Using sentiment analysis + NLTK chatbots): ~> Hey Tom, you are a brilliant individual! I am but one, you are but one more. ~> Hey Tom, thou art a fool. Become more interesting before I die of fatal boredom. Fact Memory & Recall: ~> Hey Tom, the answer to life, the universe, and everything is 42. Ok. ~> Hey Tom, what is the answer to life, the universe, and everything?. The answer to life, the universe, and everything is 42. Playing music (From device or web, includes UI controls for the former): ~> Hey Tom, play up the shard. Playing /home/murray/Music/Dr Who/Up The Shard.webm. ~> Hey Tom, stop the music. Media stopped. *NOTE: File names do not have to match exactly.* ~> Hey Tom, open my English essay. Alright. *NOTE: File names do not have to match exactly.* Opening websites: ~> Hey Tom, open Reddit. Alright. Jokes (From PyJokes): ~> Hey Tom, tell me a joke. I went to a street where the houses were numbered 8k, 16k, 32k, 64k, 128k, 256k and 512k. It was a trip down Memory Lane. Trivia: ~> Hey Tom, ask me a trivia question. Question: What is "Sealed crustless sandwich"? 1) The part of Yellowstone National Park in Idaho, where any crime can technically be committed without punishment – but don't tempt fate! 2) I got a fever, and the only prescription... is more cowbell! 3) The only nuclear reactor in a 17th-century building. 4) A patented peanut butter and jelly sandwich. ~> 4. Correct! Colossal Cave Adventure (Willie Crowther's ADVENT-350): ~> Hey Tom, let's go on an adventure! Welcome to adventure!! would you like instructions? Fun facts: ~> Hey Tom, make me smarter. Spices were not used to mask the flavor of rotting meat before refrigeration. Spices were an expensive luxury item; those who could afford them could afford good meat, and there are no contemporaneous documents calling for spices to disguise the taste of bad meat. Dice Rolls (great for D&D): ~> Hey Tom, roll me a d20. I rolled a 14. Word generation (great for Articulate) ~> Hey Tom, give me a random action word. Your word is 'winning'. Complex Mathematics (using SymPy): ~> Hey Tom, integrate (tan(x))^1/2 ∫f(x) = -ln(cos(x))/2 + c Code generation (using howdoi): ~> Hey Tom, write a hello world script in C++. #include <\iostream> int main() { std::cout << "Hello World!" << std::endl; return 0; } Most of Betty's functionality (From https://github.com/pickhardt/betty): ~> Hey Tom, what time is it? Running date +"%r (%T)" ... 02:34:46 PM (14:34:46). ~> Hey Tom, what day is it? Running date +"%A" ... Saturday. ~> Hey Tom, whats my username? Running whoami ... murray ~> Hey Tom, what is my ip address? Wlo1: flags=4163 mtu 1500 inet 192.168.43.9 netmask 255.255.255.0 broadcast 192.168.43.255 inet6 fe80::5c61:caf:5614:7b82 prefixlen 64 scopeid 0x20 ether 54:35:30:60:a8:b9 txqueuelen 1000 (Ethernet) RX packets 401121 bytes 523184185 (523.1 MB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 235650 bytes 23471151 (23.4 MB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0.">
Objective Response (From anywhere on the internet):
~> Hey Tom, what is petrichor?
According to en.wikipedia.org... Petrichor is the earthy scent produced when rain falls on dry soil. The word is constructed from the Greek petra, "rock", or petros, "stone", and ichor, the fluid that flows in the veins of the gods in Greek mythology.

Subjective Response (From Cleverbot):
~> Hey Tom, I'm in an optimistic mood.
I'm not sure if this is a good thing or not.

Emotions (Using sentiment analysis + NLTK chatbots):
~> Hey Tom, you are a brilliant individual!
I am but one, you are but one more.
~> Hey Tom, thou art a fool.
Become more interesting before I die of fatal boredom.

Fact Memory & Recall:
~> Hey Tom, the answer to life, the universe, and everything is 42.
Ok.
~> Hey Tom, what is the answer to life, the universe, and everything?.
The answer to life, the universe, and everything is 42.

Playing music (From device or web, includes UI controls for the former):
~> Hey Tom, play up the shard.
Playing /home/murray/Music/Dr Who/Up The Shard.webm.
~> Hey Tom, stop the music.
Media stopped.
*NOTE: File names do not have to match exactly.*

~> Hey Tom, open my English essay.
Alright.
*NOTE: File names do not have to match exactly.*

Opening websites:
~> Hey Tom, open Reddit.
Alright.

Jokes (From PyJokes):
~> Hey Tom, tell me a joke.
I went to a street where the houses were numbered 8k, 16k, 32k, 64k, 128k, 256k and 512k. It was a trip down Memory Lane.

Trivia:
~> Hey Tom, ask me a trivia question.
Question: What is "Sealed crustless sandwich"?
1) The part of Yellowstone National Park in Idaho, where any crime can technically be committed without punishment – but don't tempt fate!
2) I got a fever, and the only prescription... is more cowbell!
3) The only nuclear reactor in a 17th-century building.
4) A patented peanut butter and jelly sandwich.
~> 4.
Correct!

Colossal Cave Adventure (Willie Crowther's ADVENT-350):
~> Hey Tom, let's go on an adventure!
Welcome to adventure!! would you like instructions?

Fun facts:
~> Hey Tom, make me smarter.
Spices were not used to mask the flavor of rotting meat before refrigeration. Spices were an expensive luxury item; those who could afford them could afford good meat, and there are no contemporaneous documents calling for spices to disguise the taste of bad meat.

Dice Rolls (great for D&D):
~> Hey Tom, roll me a d20.
I rolled a 14.

Word generation (great for Articulate)
~> Hey Tom, give me a random action word.
Your word is 'winning'.

Complex Mathematics (using SymPy):
~> Hey Tom, integrate (tan(x))^1/2
∫f(x) = -ln(cos(x))/2 + c

Code generation (using howdoi):
~> Hey Tom, write a hello world script in C++.
#include <\iostream>
int main()
{
std::cout << "Hello World!" << std::endl;
return 0;
}

Most of Betty's functionality (From https://github.com/pickhardt/betty):
~> Hey Tom, what time is it?
Running date +"%r (%T)" ...
02:34:46 PM (14:34:46).
~> Hey Tom, what day is it?
Running date +"%A" ...
Saturday.
~> Hey Tom, whats my username?
Running whoami ...
murray
~> Hey Tom, what is my ip address?
Wlo1: flags=4163
    
      mtu 1500
    inet 192.168.43.9 netmask 255.255.255.0 broadcast 192.168.43.255
    inet6 fe80::5c61:caf:5614:7b82 prefixlen 64 scopeid 0x20
     
    ether 54:35:30:60:a8:b9 txqueuelen 1000 (Ethernet)
    RX packets 401121 bytes 523184185 (523.1 MB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 235650 bytes 23471151 (23.4 MB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0.

    

This is a fair representation of Tom's capabilities as they currently stand. See the following section on contributing for a guide of how to create your own response modules for Tom, and expand upon the above abilities.

Contributing

How to write a custom response module for Tom:

Step 1 - Understanding how Tom will treat your module:

Tom is programmed in Python. Response modules are imported into Tom using the python import statement, and the response is retrieved from the module using output = .respond( ) . The output is then returned to the user.

Step 2 - Programming the response module:

Go ahead and program your response. Your script should have a main function def respond(inp):, where inp is the user input parameter that will be passed to your function by Tom. Your function should provide it's output through a return statement (NOT a print() statement).

Step 3 - Testing your module:

Paste the following bit of code at the end of your python script, then run your program:

")))">
if __name__ == "__main__":
    while True:
        print(respond(input("~> ")))

If this works as expected, and you can type inputs on the ~> prompts and receive your output printed in the console, then continue to step 4.

Step 4 - Relative imports:

Rename your main response script to __init__.py, and make sure it's at the first level of your project folder (not nested in other folders). Next, rename the folder containing your script to the name of your module (no white-space or special characters). Now, if you are importing any functions from other scripts (does not include dependencies installed through pip), you will need to change the import statement by placing a '.' in front of the location. For example, from myOtherScript import customFunction becomes from .myOtherScript import customFunction, but import requests would remain unchanged.

Step 5 - Dependencies:

If your response module requires python packages from PyPi, make sure it includes a requirements.txt file. Any dependencies not available from PyPi should bundled with project, located in the project folder alongside __init__.py.

Step 6 - Using your module:

Paste the folder containing your response module into Tom's /responses directory. You will then need to activate the response module within Tom's modules interface, or by manually adding the name of your module to responseOrder.txt.

Step 7 - Creating a pull request:

If you feel inclined to share your module with the world, go ahead and create a pull request for your module on Tom's GitHub repository (https://github.com/Mblizzard/Tom-the-AI).

Planned Features

New response modules & capabilities to look forward to in future versions of Tom:

  • Timers & stopwatch capabilities.
  • Ability execute terminal commands.
  • Automated module installation.
  • Releases and updates available on the Ubuntu apt repositories.

Features I'm not currently planning to include in Tom, but that I'll consider adding if enough people are interested:

  • Windows support.

Versioning

Releases will follow a semantic versioning format:

. .

For more information on SemVer, visit http://semver.org/.

License

Tom the AI: A compound AI for Linux systems.
Copyright (C) 2021  Murray Jones

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see 
   .
This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroimaging" that has been accepted to NeurIPS 2021.

Dugh-NeurIPS-2021 This repo contains the code for the paper "Efficient hierarchical Bayesian inference for spatio-temporal regression models in neuroi

Ali Hashemi 5 Jul 12, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
The story of Chicken for Club Bing

Chicken Story tl;dr: The time when Microsoft banned my entire country for cheating at Club Bing. (A lot of the details are from memory so I've recreat

Eyal 142 May 16, 2022
PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluation of Visual Stories via Semantic Consistency"

Improving Generation and Evaluation of Visual Stories via Semantic Consistency PyTorch code for the NAACL 2021 paper "Improving Generation and Evaluat

Adyasha Maharana 28 Dec 08, 2022
Source code of our work: "Benchmarking Deep Models for Salient Object Detection"

SALOD Source code of our work: "Benchmarking Deep Models for Salient Object Detection". In this works, we propose a new benchmark for SALient Object D

22 Dec 30, 2022
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Yijia Weng 96 Dec 07, 2022
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
Custom TensorFlow2 implementations of forward and backward computation of soft-DTW algorithm in batch mode.

Batch Soft-DTW(Dynamic Time Warping) in TensorFlow2 including forward and backward computation Custom TensorFlow2 implementations of forward and backw

19 Aug 30, 2022
Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP"

DiLBERT Repo for the paper "DiLBERT: Cheap Embeddings for Disease Related Medical NLP" Pretrained Model The pretrained model presented in the paper is

Kevin Roitero 2 Dec 15, 2022
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
potpourri3d - An invigorating blend of 3D geometry tools in Python.

A Python library of various algorithms and utilities for 3D triangle meshes and point clouds. Managed by Nicholas Sharp, with new tools added lazily as needed. Currently, mainly bindings to C++ tools

Nicholas Sharp 295 Jan 05, 2023
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021