Tom-the-AI - A compound artificial intelligence software for Linux systems.

Overview

Tom the AI (version 0.82)

WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days.

Tom is an open source AI desktop assistant for Linux systems, built using a series of independent response modules to generate replies to any input.

Tom uses natural language processing to determine which response module is best suited to generate a response for each input, thus avoiding the need for precise syntax.

Tom the AI

By Analogy

Tom the AI is designed as a Linux alternative to software such as Apple's Siri, or Microsoft's Cortana.

Set Up

Step 1 - Update repositories:

Update apt package repositories using sudo apt update to ensure that the apt package manager has access to the latest versions of the below dependencies.

Step 2 - Install APT dependencies:

First, install python by running sudo apt install python3.9 in a terminal. Tom is tested on python 3.9, but any newer version should (probably) also work just fine.

Next, install the latest version of VLC Media player using sudo apt install vlc.

Step 3 - Download Tom:

Download Tom by cloning the GitHub repository into your home folder using git clone https://github.com/Mblizzard/Tom-the-AI.

Step 4 - Install Python dependencies:

Open a terminal inside Tom's application folder, or navigate using cd ~/Tom-the-AI/. Now run sudo pip3 install requirements.txt. Some systems may use pip in place of pip3.

Next, we need to download the required NLTK libraries by running the following code in a python shell:

>>> import nltk
>>> nltk.download('all')

Step 5 - Running Tom:

Go ahead and run python3.9 ~/Tom-the-AI/tom.py. Tom will boot up, and after a minute or so of loading, you'll be ready to go! If you feel inclined, go ahead and make a desktop launcher of this command, link Tom into your Application Menu, or create a dock shortcut.

Mission

The mission of Tom is to provide an open source compound AI for which anyone can program and contribute response modules, expanding Tom's capabilities to create a useful and entertaining artificial intelligence software.

Examples

Tom generates outputs to any input by using natural language processing to determine the most suitable response module from which to source the reply.

Give Tom natural language input, either via voice recognition or text input, for instance Hey Tom, what is petrichor?, and he'll respond in the most appropriate way. Note that the 'Hey Tom' activation phrase is only required of voice inputs.

The following is a non-exhaustive list of things you can do:

Hey Tom, I'm in an optimistic mood. I'm not sure if this is a good thing or not. Emotions (Using sentiment analysis + NLTK chatbots): ~> Hey Tom, you are a brilliant individual! I am but one, you are but one more. ~> Hey Tom, thou art a fool. Become more interesting before I die of fatal boredom. Fact Memory & Recall: ~> Hey Tom, the answer to life, the universe, and everything is 42. Ok. ~> Hey Tom, what is the answer to life, the universe, and everything?. The answer to life, the universe, and everything is 42. Playing music (From device or web, includes UI controls for the former): ~> Hey Tom, play up the shard. Playing /home/murray/Music/Dr Who/Up The Shard.webm. ~> Hey Tom, stop the music. Media stopped. *NOTE: File names do not have to match exactly.* ~> Hey Tom, open my English essay. Alright. *NOTE: File names do not have to match exactly.* Opening websites: ~> Hey Tom, open Reddit. Alright. Jokes (From PyJokes): ~> Hey Tom, tell me a joke. I went to a street where the houses were numbered 8k, 16k, 32k, 64k, 128k, 256k and 512k. It was a trip down Memory Lane. Trivia: ~> Hey Tom, ask me a trivia question. Question: What is "Sealed crustless sandwich"? 1) The part of Yellowstone National Park in Idaho, where any crime can technically be committed without punishment – but don't tempt fate! 2) I got a fever, and the only prescription... is more cowbell! 3) The only nuclear reactor in a 17th-century building. 4) A patented peanut butter and jelly sandwich. ~> 4. Correct! Colossal Cave Adventure (Willie Crowther's ADVENT-350): ~> Hey Tom, let's go on an adventure! Welcome to adventure!! would you like instructions? Fun facts: ~> Hey Tom, make me smarter. Spices were not used to mask the flavor of rotting meat before refrigeration. Spices were an expensive luxury item; those who could afford them could afford good meat, and there are no contemporaneous documents calling for spices to disguise the taste of bad meat. Dice Rolls (great for D&D): ~> Hey Tom, roll me a d20. I rolled a 14. Word generation (great for Articulate) ~> Hey Tom, give me a random action word. Your word is 'winning'. Complex Mathematics (using SymPy): ~> Hey Tom, integrate (tan(x))^1/2 ∫f(x) = -ln(cos(x))/2 + c Code generation (using howdoi): ~> Hey Tom, write a hello world script in C++. #include <\iostream> int main() { std::cout << "Hello World!" << std::endl; return 0; } Most of Betty's functionality (From https://github.com/pickhardt/betty): ~> Hey Tom, what time is it? Running date +"%r (%T)" ... 02:34:46 PM (14:34:46). ~> Hey Tom, what day is it? Running date +"%A" ... Saturday. ~> Hey Tom, whats my username? Running whoami ... murray ~> Hey Tom, what is my ip address? Wlo1: flags=4163 mtu 1500 inet 192.168.43.9 netmask 255.255.255.0 broadcast 192.168.43.255 inet6 fe80::5c61:caf:5614:7b82 prefixlen 64 scopeid 0x20 ether 54:35:30:60:a8:b9 txqueuelen 1000 (Ethernet) RX packets 401121 bytes 523184185 (523.1 MB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 235650 bytes 23471151 (23.4 MB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0.">
Objective Response (From anywhere on the internet):
~> Hey Tom, what is petrichor?
According to en.wikipedia.org... Petrichor is the earthy scent produced when rain falls on dry soil. The word is constructed from the Greek petra, "rock", or petros, "stone", and ichor, the fluid that flows in the veins of the gods in Greek mythology.

Subjective Response (From Cleverbot):
~> Hey Tom, I'm in an optimistic mood.
I'm not sure if this is a good thing or not.

Emotions (Using sentiment analysis + NLTK chatbots):
~> Hey Tom, you are a brilliant individual!
I am but one, you are but one more.
~> Hey Tom, thou art a fool.
Become more interesting before I die of fatal boredom.

Fact Memory & Recall:
~> Hey Tom, the answer to life, the universe, and everything is 42.
Ok.
~> Hey Tom, what is the answer to life, the universe, and everything?.
The answer to life, the universe, and everything is 42.

Playing music (From device or web, includes UI controls for the former):
~> Hey Tom, play up the shard.
Playing /home/murray/Music/Dr Who/Up The Shard.webm.
~> Hey Tom, stop the music.
Media stopped.
*NOTE: File names do not have to match exactly.*

~> Hey Tom, open my English essay.
Alright.
*NOTE: File names do not have to match exactly.*

Opening websites:
~> Hey Tom, open Reddit.
Alright.

Jokes (From PyJokes):
~> Hey Tom, tell me a joke.
I went to a street where the houses were numbered 8k, 16k, 32k, 64k, 128k, 256k and 512k. It was a trip down Memory Lane.

Trivia:
~> Hey Tom, ask me a trivia question.
Question: What is "Sealed crustless sandwich"?
1) The part of Yellowstone National Park in Idaho, where any crime can technically be committed without punishment – but don't tempt fate!
2) I got a fever, and the only prescription... is more cowbell!
3) The only nuclear reactor in a 17th-century building.
4) A patented peanut butter and jelly sandwich.
~> 4.
Correct!

Colossal Cave Adventure (Willie Crowther's ADVENT-350):
~> Hey Tom, let's go on an adventure!
Welcome to adventure!! would you like instructions?

Fun facts:
~> Hey Tom, make me smarter.
Spices were not used to mask the flavor of rotting meat before refrigeration. Spices were an expensive luxury item; those who could afford them could afford good meat, and there are no contemporaneous documents calling for spices to disguise the taste of bad meat.

Dice Rolls (great for D&D):
~> Hey Tom, roll me a d20.
I rolled a 14.

Word generation (great for Articulate)
~> Hey Tom, give me a random action word.
Your word is 'winning'.

Complex Mathematics (using SymPy):
~> Hey Tom, integrate (tan(x))^1/2
∫f(x) = -ln(cos(x))/2 + c

Code generation (using howdoi):
~> Hey Tom, write a hello world script in C++.
#include <\iostream>
int main()
{
std::cout << "Hello World!" << std::endl;
return 0;
}

Most of Betty's functionality (From https://github.com/pickhardt/betty):
~> Hey Tom, what time is it?
Running date +"%r (%T)" ...
02:34:46 PM (14:34:46).
~> Hey Tom, what day is it?
Running date +"%A" ...
Saturday.
~> Hey Tom, whats my username?
Running whoami ...
murray
~> Hey Tom, what is my ip address?
Wlo1: flags=4163
    
      mtu 1500
    inet 192.168.43.9 netmask 255.255.255.0 broadcast 192.168.43.255
    inet6 fe80::5c61:caf:5614:7b82 prefixlen 64 scopeid 0x20
     
    ether 54:35:30:60:a8:b9 txqueuelen 1000 (Ethernet)
    RX packets 401121 bytes 523184185 (523.1 MB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 235650 bytes 23471151 (23.4 MB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0.

    

This is a fair representation of Tom's capabilities as they currently stand. See the following section on contributing for a guide of how to create your own response modules for Tom, and expand upon the above abilities.

Contributing

How to write a custom response module for Tom:

Step 1 - Understanding how Tom will treat your module:

Tom is programmed in Python. Response modules are imported into Tom using the python import statement, and the response is retrieved from the module using output = .respond( ) . The output is then returned to the user.

Step 2 - Programming the response module:

Go ahead and program your response. Your script should have a main function def respond(inp):, where inp is the user input parameter that will be passed to your function by Tom. Your function should provide it's output through a return statement (NOT a print() statement).

Step 3 - Testing your module:

Paste the following bit of code at the end of your python script, then run your program:

")))">
if __name__ == "__main__":
    while True:
        print(respond(input("~> ")))

If this works as expected, and you can type inputs on the ~> prompts and receive your output printed in the console, then continue to step 4.

Step 4 - Relative imports:

Rename your main response script to __init__.py, and make sure it's at the first level of your project folder (not nested in other folders). Next, rename the folder containing your script to the name of your module (no white-space or special characters). Now, if you are importing any functions from other scripts (does not include dependencies installed through pip), you will need to change the import statement by placing a '.' in front of the location. For example, from myOtherScript import customFunction becomes from .myOtherScript import customFunction, but import requests would remain unchanged.

Step 5 - Dependencies:

If your response module requires python packages from PyPi, make sure it includes a requirements.txt file. Any dependencies not available from PyPi should bundled with project, located in the project folder alongside __init__.py.

Step 6 - Using your module:

Paste the folder containing your response module into Tom's /responses directory. You will then need to activate the response module within Tom's modules interface, or by manually adding the name of your module to responseOrder.txt.

Step 7 - Creating a pull request:

If you feel inclined to share your module with the world, go ahead and create a pull request for your module on Tom's GitHub repository (https://github.com/Mblizzard/Tom-the-AI).

Planned Features

New response modules & capabilities to look forward to in future versions of Tom:

  • Timers & stopwatch capabilities.
  • Ability execute terminal commands.
  • Automated module installation.
  • Releases and updates available on the Ubuntu apt repositories.

Features I'm not currently planning to include in Tom, but that I'll consider adding if enough people are interested:

  • Windows support.

Versioning

Releases will follow a semantic versioning format:

. .

For more information on SemVer, visit http://semver.org/.

License

Tom the AI: A compound AI for Linux systems.
Copyright (C) 2021  Murray Jones

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see 
   .
Fine-grained Post-training for Improving Retrieval-based Dialogue Systems - NAACL 2021

Fine-grained Post-training for Multi-turn Response Selection Implements the model described in the following paper Fine-grained Post-training for Impr

Janghoon Han 83 Dec 20, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Dec 29, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Computer-Vision-Paper-Reviews - Computer Vision Paper Reviews with Key Summary along Papers & Codes

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 50+ Papers across Computer Visio

Jonathan Choi 2 Mar 17, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
RealTime Emotion Recognizer for Machine Learning Study Jam's demo

Emotion recognizer Table of contents Clone project Dataset Install dependencies Main program Demo 1. Clone project git clone https://github.com/GDSC20

Google Developer Student Club - UIT 1 Oct 05, 2021
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
Neural models of common sense. 🤖

Unicorn on Rainbow Neural models of common sense. This repository is for the paper: Unicorn on Rainbow: A Universal Commonsense Reasoning Model on a N

AI2 60 Jan 05, 2023
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
Speech-Emotion-Analyzer - The neural network model is capable of detecting five different male/female emotions from audio speeches. (Deep Learning, NLP, Python)

Speech Emotion Analyzer The idea behind creating this project was to build a machine learning model that could detect emotions from the speech we have

Mitesh Puthran 965 Dec 24, 2022
Uni-Fold: Training your own deep protein-folding models.

Uni-Fold: Training your own deep protein-folding models. This package provides and implementation of a trainable, Transformer-based deep protein foldi

DeepModeling 88 Jan 03, 2023
Measuring and Improving Consistency in Pretrained Language Models

ParaRel 🤘 This repository contains the code and data for the paper: Measuring and Improving Consistency in Pretrained Language Models as well as the

Yanai Elazar 26 Dec 02, 2022
A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

45 Nov 29, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks

SVHNClassifier-PyTorch A PyTorch implementation of Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks If

Potter Hsu 182 Jan 03, 2023