Tom-the-AI - A compound artificial intelligence software for Linux systems.

Overview

Tom the AI (version 0.82)

WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days.

Tom is an open source AI desktop assistant for Linux systems, built using a series of independent response modules to generate replies to any input.

Tom uses natural language processing to determine which response module is best suited to generate a response for each input, thus avoiding the need for precise syntax.

Tom the AI

By Analogy

Tom the AI is designed as a Linux alternative to software such as Apple's Siri, or Microsoft's Cortana.

Set Up

Step 1 - Update repositories:

Update apt package repositories using sudo apt update to ensure that the apt package manager has access to the latest versions of the below dependencies.

Step 2 - Install APT dependencies:

First, install python by running sudo apt install python3.9 in a terminal. Tom is tested on python 3.9, but any newer version should (probably) also work just fine.

Next, install the latest version of VLC Media player using sudo apt install vlc.

Step 3 - Download Tom:

Download Tom by cloning the GitHub repository into your home folder using git clone https://github.com/Mblizzard/Tom-the-AI.

Step 4 - Install Python dependencies:

Open a terminal inside Tom's application folder, or navigate using cd ~/Tom-the-AI/. Now run sudo pip3 install requirements.txt. Some systems may use pip in place of pip3.

Next, we need to download the required NLTK libraries by running the following code in a python shell:

>>> import nltk
>>> nltk.download('all')

Step 5 - Running Tom:

Go ahead and run python3.9 ~/Tom-the-AI/tom.py. Tom will boot up, and after a minute or so of loading, you'll be ready to go! If you feel inclined, go ahead and make a desktop launcher of this command, link Tom into your Application Menu, or create a dock shortcut.

Mission

The mission of Tom is to provide an open source compound AI for which anyone can program and contribute response modules, expanding Tom's capabilities to create a useful and entertaining artificial intelligence software.

Examples

Tom generates outputs to any input by using natural language processing to determine the most suitable response module from which to source the reply.

Give Tom natural language input, either via voice recognition or text input, for instance Hey Tom, what is petrichor?, and he'll respond in the most appropriate way. Note that the 'Hey Tom' activation phrase is only required of voice inputs.

The following is a non-exhaustive list of things you can do:

Hey Tom, I'm in an optimistic mood. I'm not sure if this is a good thing or not. Emotions (Using sentiment analysis + NLTK chatbots): ~> Hey Tom, you are a brilliant individual! I am but one, you are but one more. ~> Hey Tom, thou art a fool. Become more interesting before I die of fatal boredom. Fact Memory & Recall: ~> Hey Tom, the answer to life, the universe, and everything is 42. Ok. ~> Hey Tom, what is the answer to life, the universe, and everything?. The answer to life, the universe, and everything is 42. Playing music (From device or web, includes UI controls for the former): ~> Hey Tom, play up the shard. Playing /home/murray/Music/Dr Who/Up The Shard.webm. ~> Hey Tom, stop the music. Media stopped. *NOTE: File names do not have to match exactly.* ~> Hey Tom, open my English essay. Alright. *NOTE: File names do not have to match exactly.* Opening websites: ~> Hey Tom, open Reddit. Alright. Jokes (From PyJokes): ~> Hey Tom, tell me a joke. I went to a street where the houses were numbered 8k, 16k, 32k, 64k, 128k, 256k and 512k. It was a trip down Memory Lane. Trivia: ~> Hey Tom, ask me a trivia question. Question: What is "Sealed crustless sandwich"? 1) The part of Yellowstone National Park in Idaho, where any crime can technically be committed without punishment – but don't tempt fate! 2) I got a fever, and the only prescription... is more cowbell! 3) The only nuclear reactor in a 17th-century building. 4) A patented peanut butter and jelly sandwich. ~> 4. Correct! Colossal Cave Adventure (Willie Crowther's ADVENT-350): ~> Hey Tom, let's go on an adventure! Welcome to adventure!! would you like instructions? Fun facts: ~> Hey Tom, make me smarter. Spices were not used to mask the flavor of rotting meat before refrigeration. Spices were an expensive luxury item; those who could afford them could afford good meat, and there are no contemporaneous documents calling for spices to disguise the taste of bad meat. Dice Rolls (great for D&D): ~> Hey Tom, roll me a d20. I rolled a 14. Word generation (great for Articulate) ~> Hey Tom, give me a random action word. Your word is 'winning'. Complex Mathematics (using SymPy): ~> Hey Tom, integrate (tan(x))^1/2 ∫f(x) = -ln(cos(x))/2 + c Code generation (using howdoi): ~> Hey Tom, write a hello world script in C++. #include <\iostream> int main() { std::cout << "Hello World!" << std::endl; return 0; } Most of Betty's functionality (From https://github.com/pickhardt/betty): ~> Hey Tom, what time is it? Running date +"%r (%T)" ... 02:34:46 PM (14:34:46). ~> Hey Tom, what day is it? Running date +"%A" ... Saturday. ~> Hey Tom, whats my username? Running whoami ... murray ~> Hey Tom, what is my ip address? Wlo1: flags=4163 mtu 1500 inet 192.168.43.9 netmask 255.255.255.0 broadcast 192.168.43.255 inet6 fe80::5c61:caf:5614:7b82 prefixlen 64 scopeid 0x20 ether 54:35:30:60:a8:b9 txqueuelen 1000 (Ethernet) RX packets 401121 bytes 523184185 (523.1 MB) RX errors 0 dropped 0 overruns 0 frame 0 TX packets 235650 bytes 23471151 (23.4 MB) TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0.">
Objective Response (From anywhere on the internet):
~> Hey Tom, what is petrichor?
According to en.wikipedia.org... Petrichor is the earthy scent produced when rain falls on dry soil. The word is constructed from the Greek petra, "rock", or petros, "stone", and ichor, the fluid that flows in the veins of the gods in Greek mythology.

Subjective Response (From Cleverbot):
~> Hey Tom, I'm in an optimistic mood.
I'm not sure if this is a good thing or not.

Emotions (Using sentiment analysis + NLTK chatbots):
~> Hey Tom, you are a brilliant individual!
I am but one, you are but one more.
~> Hey Tom, thou art a fool.
Become more interesting before I die of fatal boredom.

Fact Memory & Recall:
~> Hey Tom, the answer to life, the universe, and everything is 42.
Ok.
~> Hey Tom, what is the answer to life, the universe, and everything?.
The answer to life, the universe, and everything is 42.

Playing music (From device or web, includes UI controls for the former):
~> Hey Tom, play up the shard.
Playing /home/murray/Music/Dr Who/Up The Shard.webm.
~> Hey Tom, stop the music.
Media stopped.
*NOTE: File names do not have to match exactly.*

~> Hey Tom, open my English essay.
Alright.
*NOTE: File names do not have to match exactly.*

Opening websites:
~> Hey Tom, open Reddit.
Alright.

Jokes (From PyJokes):
~> Hey Tom, tell me a joke.
I went to a street where the houses were numbered 8k, 16k, 32k, 64k, 128k, 256k and 512k. It was a trip down Memory Lane.

Trivia:
~> Hey Tom, ask me a trivia question.
Question: What is "Sealed crustless sandwich"?
1) The part of Yellowstone National Park in Idaho, where any crime can technically be committed without punishment – but don't tempt fate!
2) I got a fever, and the only prescription... is more cowbell!
3) The only nuclear reactor in a 17th-century building.
4) A patented peanut butter and jelly sandwich.
~> 4.
Correct!

Colossal Cave Adventure (Willie Crowther's ADVENT-350):
~> Hey Tom, let's go on an adventure!
Welcome to adventure!! would you like instructions?

Fun facts:
~> Hey Tom, make me smarter.
Spices were not used to mask the flavor of rotting meat before refrigeration. Spices were an expensive luxury item; those who could afford them could afford good meat, and there are no contemporaneous documents calling for spices to disguise the taste of bad meat.

Dice Rolls (great for D&D):
~> Hey Tom, roll me a d20.
I rolled a 14.

Word generation (great for Articulate)
~> Hey Tom, give me a random action word.
Your word is 'winning'.

Complex Mathematics (using SymPy):
~> Hey Tom, integrate (tan(x))^1/2
∫f(x) = -ln(cos(x))/2 + c

Code generation (using howdoi):
~> Hey Tom, write a hello world script in C++.
#include <\iostream>
int main()
{
std::cout << "Hello World!" << std::endl;
return 0;
}

Most of Betty's functionality (From https://github.com/pickhardt/betty):
~> Hey Tom, what time is it?
Running date +"%r (%T)" ...
02:34:46 PM (14:34:46).
~> Hey Tom, what day is it?
Running date +"%A" ...
Saturday.
~> Hey Tom, whats my username?
Running whoami ...
murray
~> Hey Tom, what is my ip address?
Wlo1: flags=4163
    
      mtu 1500
    inet 192.168.43.9 netmask 255.255.255.0 broadcast 192.168.43.255
    inet6 fe80::5c61:caf:5614:7b82 prefixlen 64 scopeid 0x20
     
    ether 54:35:30:60:a8:b9 txqueuelen 1000 (Ethernet)
    RX packets 401121 bytes 523184185 (523.1 MB)
    RX errors 0 dropped 0 overruns 0 frame 0
    TX packets 235650 bytes 23471151 (23.4 MB)
    TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0.

    

This is a fair representation of Tom's capabilities as they currently stand. See the following section on contributing for a guide of how to create your own response modules for Tom, and expand upon the above abilities.

Contributing

How to write a custom response module for Tom:

Step 1 - Understanding how Tom will treat your module:

Tom is programmed in Python. Response modules are imported into Tom using the python import statement, and the response is retrieved from the module using output = .respond( ) . The output is then returned to the user.

Step 2 - Programming the response module:

Go ahead and program your response. Your script should have a main function def respond(inp):, where inp is the user input parameter that will be passed to your function by Tom. Your function should provide it's output through a return statement (NOT a print() statement).

Step 3 - Testing your module:

Paste the following bit of code at the end of your python script, then run your program:

")))">
if __name__ == "__main__":
    while True:
        print(respond(input("~> ")))

If this works as expected, and you can type inputs on the ~> prompts and receive your output printed in the console, then continue to step 4.

Step 4 - Relative imports:

Rename your main response script to __init__.py, and make sure it's at the first level of your project folder (not nested in other folders). Next, rename the folder containing your script to the name of your module (no white-space or special characters). Now, if you are importing any functions from other scripts (does not include dependencies installed through pip), you will need to change the import statement by placing a '.' in front of the location. For example, from myOtherScript import customFunction becomes from .myOtherScript import customFunction, but import requests would remain unchanged.

Step 5 - Dependencies:

If your response module requires python packages from PyPi, make sure it includes a requirements.txt file. Any dependencies not available from PyPi should bundled with project, located in the project folder alongside __init__.py.

Step 6 - Using your module:

Paste the folder containing your response module into Tom's /responses directory. You will then need to activate the response module within Tom's modules interface, or by manually adding the name of your module to responseOrder.txt.

Step 7 - Creating a pull request:

If you feel inclined to share your module with the world, go ahead and create a pull request for your module on Tom's GitHub repository (https://github.com/Mblizzard/Tom-the-AI).

Planned Features

New response modules & capabilities to look forward to in future versions of Tom:

  • Timers & stopwatch capabilities.
  • Ability execute terminal commands.
  • Automated module installation.
  • Releases and updates available on the Ubuntu apt repositories.

Features I'm not currently planning to include in Tom, but that I'll consider adding if enough people are interested:

  • Windows support.

Versioning

Releases will follow a semantic versioning format:

. .

For more information on SemVer, visit http://semver.org/.

License

Tom the AI: A compound AI for Linux systems.
Copyright (C) 2021  Murray Jones

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see 
   .
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
E2C implementation in PyTorch

Embed to Control implementation in PyTorch Paper can be found here: https://arxiv.org/abs/1506.07365 You will need a patched version of OpenAI Gym in

Yicheng Luo 42 Dec 12, 2022
Acute ischemic stroke dataset

AISD Acute ischemic stroke dataset contains 397 Non-Contrast-enhanced CT (NCCT) scans of acute ischemic stroke with the interval from symptom onset to

Kongming Liang 21 Sep 06, 2022
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
An open source app to help calm you down when needed.

By: Seanpm2001, Et; Al. Top README.md Read this article in a different language Sorted by: A-Z Sorting options unavailable ( af Afrikaans Afrikaans |

Sean P. Myrick V19.1.7.2 2 Oct 24, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
190 Jan 03, 2023
The code repository for "RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection" (ACM MM'21)

RCNet: Reverse Feature Pyramid and Cross-scale Shift Network for Object Detection (ACM MM'21) By Zhuofan Zong, Qianggang Cao, Biao Leng Introduction F

TempleX 9 Jul 30, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
From Perceptron model to Deep Neural Network from scratch in Python.

Neural-Network-Basics Aim of this Repository: From Perceptron model to Deep Neural Network (from scratch) in Python. ** Currently working on a basic N

Aditya Kahol 1 Jan 14, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022
Bringing sanity to world of messed-up data

Sanitize sanitize is a Python module for making sure various things (e.g. HTML) are safe to use. It was originally written by Mark Pilgrim and is dist

Alireza Savand 63 Oct 26, 2021
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks

Local Similarity Pattern and Cost Self-Reassembling for Deep Stereo Matching Networks Contributions A novel pairwise feature LSP to extract structural

31 Dec 06, 2022
A simple, unofficial implementation of MAE using pytorch-lightning

Masked Autoencoders in PyTorch A simple, unofficial implementation of MAE (Masked Autoencoders are Scalable Vision Learners) using pytorch-lightning.

Connor Anderson 20 Dec 03, 2022