Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

Overview

PanopticStudio Toolbox

This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data.

Note:

  • Sep-21-2020: Currently our server is offline due to the power outage in the CMU Campus, and COVID-19 makes it difficult to access the server room. We will fix the issue as soon as possible. 
  • Sep-30-2020: Unfortunately, we found that our server has been broken and we are replacing it now. Please wait a couple of more weeks.
  • Oct-5-2020: Our server is back and online now!
  • May-18-2021: Currently our server is offline due to our server maintenance. Hopefully it will be back online in this week.  

Quick start guide

Follow these steps to set up a simple example:

1. Check out the codebase

git clone https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox
cd panoptic-toolbox

2. Download a sample data and other data

To download a dataset, named "171204_pose1_sample" in this example, run the following script.

./scripts/getData.sh 171204_pose1_sample

This bash script requires curl or wget.

This script will create a folder "./171204_pose1_sample" and download the following files.

  • 171204_pose1_sample/hdVideos/hd_00_XX.mp4 #synchronized HD video files (31 views)
  • 171204_pose1_sample/vgaVideos/KINECTNODE%d/vga_XX_XX.mp4 #synchrponized VGA video files (480 views)
  • 171204_pose1_sample/calibration_171204_pose1_sample.json #calibration files
  • 171204_pose1_sample/hdPose3d_stage1_coco19.tar #3D Body Keypoint Data (coco19 keypoint definition)
  • 171204_pose1_sample/hdFace3d.tar #3D Face Keypoint Data
  • 171204_pose1_sample/hdHand3d.tar #3D Hand Keypoint Data

Note that this sample example currently does not have VGA videos.

You can also download any other seqeunce through this script. Just use the the name of the target sequence: instead of the "171204_pose1panopticHD". r example,

./scripts/getData.sh 171204_pose1

for the full version of 171204_pose1 sequence:. You can also specify the number of videospanopticHDnt to donwload.

./scripts/getData.sh (sequenceName) (VGA_Video_Number) (HD_Video_Number)

For example, the following command will download 240 vga videos and 10 videos.

./scripts/getData.sh 171204_pose1_sample 240 10

Note that we have sorted the VGA camera order so that you download uniformly distributed view.

3. Downloading All Available Sequences

You can find the list of currently available sequences in the following link:

List of released sequences (ver1.2)

Downloading all of them (including videos) may take a long time, but downloading 3D keypoint files (body+face+hand upon their availability) should be "relatively" quick.

You can use the following script to download currently available sequences (ver 1.2):

./scripts/getDB_panopticHD_ver1_2.sh

The default setting is not downloading any videos. Feel free to change the "vgaVideoNum" and "hdVideoNum" in the script to other numbers if you also want to download videos.

You can see the example videos and other information of each sequence: in our website: Browsing dataset.

Check the 3D viewer in each sequence: page where you can visualize 3D skeletons in your web browser. For example: http://domedb.perception.cs.cmu.edu/panopticHDpose1.html

4. Extract the images & 3D keypoint data

This step requires ffmpeg.

./scripts/extractAll.sh 171204_pose1_sample

This will extract images, for example 171204_pose1_sample/hdImgs/00_00/00_00_00000000.jpg, and the corresponding 3D skeleton data, for example 171204_pose1_sample/hdPose3d_stage1_coco19/body3DScene_00000000.json.

extractAll.sh is a simple script that combines the following set of commands (you shouldn't need to run these again):

cd 171204_pose1_sample
../scripts/vgaImgsExtractor.sh # PNG files from VGA video (25 fps)
../scripts/hdImgsExtractor.sh # PNG files from HD video (29.97 fps)
tar -xf vgaPose3d_stage1.tar # Extract skeletons at VGA framerate
tar -xf hdPose3d_stage1.tar # Extract skeletons for HD
cd ..

5. Run demo programs

Python

This codes require numpy, matplotlib.

Visualizing 3D keypoints (body, face, hand):

cd python
jupyter notebook demo_3Dkeypoints_3dview.ipynb

The result should look like this.

Reprojecting 3D keypoints (body, face, hand) on a selected HD view:

cd python
jupyter notebook demo_3Dkeypoints_reprojection_hd.ipynb

The result should look like this.

This codes require numpy, matplotlib.

Visualizing 3D keypoints (body, face, hand):

cd python
jupyter notebook demo_3Dkeypoints_3dview.ipynb

The result should look like this.

Reprojecting 3D keypoints (body, face, hand) on a selected HD view:

cd python
jupyter notebook demo_3Dkeypoints_reprojection_hd.ipynb

The result should look like this.

Python + OpengGL

  • This codes require pyopengl.

  • Visualizing 3D keypoints (body, face, hand):

python glViewer.py

Matlab

Note: Matlab code is outdated, and does not handle 3D keypoint outputs (coco19 body, face, hand). Please see this code only for reference. We will update this later.

Matlab example (outdated):

>>> cd matlab
>>> demo

Skeleton Output Format

We reconstruct 3D skeleton of people using the method of Joo et al. 2018.

The output of each frame is written in a json file. For example,

{ "version": 0.7, 
"univTime" :53541.542,
"fpsType" :"hd_29_97",
"bodies" :
[
{ "id": 0,
"joints19": [-19.4528, -146.612, 1.46159, 0.724274, -40.4564, -163.091, -0.521563, 0.575897, -14.9749, -91.0176, 4.24329, 0.361725, -19.2473, -146.679, -16.1136, 0.643555, -14.7958, -118.804, -20.6738, 0.619599, -22.611, -93.8793, -17.7834, 0.557953, -12.3267, -91.5465, -6.55368, 0.353241, -12.6556, -47.0963, -4.83599, 0.455566, -10.8069, -8.31645, -4.20936, 0.501312, -20.2358, -147.348, 19.1843, 0.628022, -13.1145, -120.269, 28.0371, 0.63559, -20.1037, -94.3607, 30.0809, 0.625916, -17.623, -90.4888, 15.0403, 0.327759, -17.3973, -46.9311, 15.9659, 0.419586, -13.1719, -7.60601, 13.4749, 0.519653, -38.7164, -166.851, -3.25917, 0.46228, -28.7043, -167.333, -7.15903, 0.523224, -39.0433, -166.677, 2.55916, 0.395965, -30.0718, -167.264, 8.18371, 0.510041]
}
] }

Here, each subject has the following values.

id: a unique subject index within a sequence:. Skeletons with the same id across time represent temporally associated moving skeletons (an individual). However, the same person may have multiple ids joints19: 19 3D joint locations, formatted as [x1,y1,z1,c1,x2,y2,z2,c2,...] where each c ispanopticHDjoint confidence score.

The 3D skeletons have the following keypoint order:

0: Neck
1: Nose
2: BodyCenter (center of hips)
3: lShoulder
4: lElbow
5: lWrist,
6: lHip
7: lKnee
8: lAnkle
9: rShoulder
10: rElbow
11: rWrist
12: rHip
13: rKnee
14: rAnkle
15: lEye
16: lEar
17: rEye
18: rEar

Note that this is different from OpenPose output order, although our method is based on it.

Note that we used to use an old format (named mpi15 as described in our outdated document), but we do not this format anymore.

KinopticStudio Toolbox

Kinoptic Studio is a subsystem of Panoptic Studio, which is composed of 10 Kinect2 sensors. Please see: README_kinoptic

Panoptic 3D PointCloud DB ver.1

You can download all sequences included in our 3D PointCloud DB ver.1 using the following script:

./scripts/getDB_ptCloud_ver1.sh

Haggling DB

We have released the processed data for the haggling sequence. Please see Social Signal Processing repository.

Teaser Image

License

Panoptic Studio Dataset is freely available for non-commercial and research purpose only.

References

By using the dataset, you agree to cite at least one of the following papers.

@inproceedings{Joo_2015_ICCV,
author = {Joo, Hanbyul and Liu, Hao and Tan, Lei and Gui, Lin and Nabbe, Bart and Matthews, Iain and Kanade, Takeo and Nobuhara, Shohei and Sheikh, Yaser},
title = {Panoptic Studio: A Massively Multiview System for Social Motion Capture},
booktitle = {ICCV},
year = {2015} }

@inproceedings{Joo_2017_TPAMI,
title={Panoptic Studio: A Massively Multiview System for Social Interaction Capture},
author={Joo, Hanbyul and Simon, Tomas and Li, Xulong and Liu, Hao and Tan, Lei and Gui, Lin and Banerjee, Sean and Godisart, Timothy Scott and Nabbe, Bart and Matthews, Iain and Kanade, Takeo and Nobuhara, Shohei and Sheikh, Yaser},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2017} }

@inproceedings{Simon_2017_CVPR,
title={Hand Keypoint Detection in Single Images using Multiview Bootstrapping},
author={Simon, Tomas and Joo, Hanbyul and Sheikh, Yaser},
journal={CVPR},
year={2017} }

@inproceedings{joo2019ssp,
  title={Towards Social Artificial Intelligence: Nonverbal Social Signal Prediction in A Triadic Interaction},
  author={Joo, Hanbyul and Simon, Tomas and Cikara, Mina and Sheikh, Yaser},
  booktitle={CVPR},
  year={2019}
}



The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs

catsetmat The source code for CATSETMAT: Cross Attention for Set Matching in Bipartite Hypergraphs To be able to run it, add catsetmat to PYTHONPATH H

2 Dec 19, 2022
Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker

Image Segmentation with U-Net Algorithm on Carvana Dataset using AWS Sagemaker This is a full project of image segmentation using the model built with

Htin Aung Lu 1 Jan 04, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021)

Investigating Attention Mechanism in 3D Point Cloud Object Detection (arXiv 2021) This repository is for the following paper: "Investigating Attention

52 Nov 19, 2022
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Rotation-Only Bundle Adjustment

ROBA: Rotation-Only Bundle Adjustment Paper, Video, Poster, Presentation, Supplementary Material In this repository, we provide the implementation of

Seong 51 Nov 29, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
GANfolk: Using AI to create portraits of fictional people to sell as NFTs

GANfolk are AI-generated renderings of fictional people. Each image in the collection was created by a pair of Generative Adversarial Networks (GANs) with names and backstories also created with AI.

Robert A. Gonsalves 32 Dec 02, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue. How do I cite D-REX? For now, cite

Alon Albalak 6 Mar 31, 2022
Rendering Point Clouds with Compute Shaders

Compute Shader Based Point Cloud Rendering This repository contains the source code to our techreport: Rendering Point Clouds with Compute Shaders and

Markus Schütz 460 Jan 05, 2023
Video-based open-world segmentation

UVO_Challenge Team Alpes_runner Solutions This is an official repo for our UVO Challenge solutions for Image/Video-based open-world segmentation. Our

Yuming Du 84 Dec 22, 2022
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation

Look Closer: Bridging Egocentric and Third-Person Views with Transformers for Robotic Manipulation Official PyTorch implementation for the paper Look

Rishabh Jangir 20 Nov 24, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022