Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

Overview

PanopticStudio Toolbox

This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data.

Note:

  • Sep-21-2020: Currently our server is offline due to the power outage in the CMU Campus, and COVID-19 makes it difficult to access the server room. We will fix the issue as soon as possible. 
  • Sep-30-2020: Unfortunately, we found that our server has been broken and we are replacing it now. Please wait a couple of more weeks.
  • Oct-5-2020: Our server is back and online now!
  • May-18-2021: Currently our server is offline due to our server maintenance. Hopefully it will be back online in this week.  

Quick start guide

Follow these steps to set up a simple example:

1. Check out the codebase

git clone https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox
cd panoptic-toolbox

2. Download a sample data and other data

To download a dataset, named "171204_pose1_sample" in this example, run the following script.

./scripts/getData.sh 171204_pose1_sample

This bash script requires curl or wget.

This script will create a folder "./171204_pose1_sample" and download the following files.

  • 171204_pose1_sample/hdVideos/hd_00_XX.mp4 #synchronized HD video files (31 views)
  • 171204_pose1_sample/vgaVideos/KINECTNODE%d/vga_XX_XX.mp4 #synchrponized VGA video files (480 views)
  • 171204_pose1_sample/calibration_171204_pose1_sample.json #calibration files
  • 171204_pose1_sample/hdPose3d_stage1_coco19.tar #3D Body Keypoint Data (coco19 keypoint definition)
  • 171204_pose1_sample/hdFace3d.tar #3D Face Keypoint Data
  • 171204_pose1_sample/hdHand3d.tar #3D Hand Keypoint Data

Note that this sample example currently does not have VGA videos.

You can also download any other seqeunce through this script. Just use the the name of the target sequence: instead of the "171204_pose1panopticHD". r example,

./scripts/getData.sh 171204_pose1

for the full version of 171204_pose1 sequence:. You can also specify the number of videospanopticHDnt to donwload.

./scripts/getData.sh (sequenceName) (VGA_Video_Number) (HD_Video_Number)

For example, the following command will download 240 vga videos and 10 videos.

./scripts/getData.sh 171204_pose1_sample 240 10

Note that we have sorted the VGA camera order so that you download uniformly distributed view.

3. Downloading All Available Sequences

You can find the list of currently available sequences in the following link:

List of released sequences (ver1.2)

Downloading all of them (including videos) may take a long time, but downloading 3D keypoint files (body+face+hand upon their availability) should be "relatively" quick.

You can use the following script to download currently available sequences (ver 1.2):

./scripts/getDB_panopticHD_ver1_2.sh

The default setting is not downloading any videos. Feel free to change the "vgaVideoNum" and "hdVideoNum" in the script to other numbers if you also want to download videos.

You can see the example videos and other information of each sequence: in our website: Browsing dataset.

Check the 3D viewer in each sequence: page where you can visualize 3D skeletons in your web browser. For example: http://domedb.perception.cs.cmu.edu/panopticHDpose1.html

4. Extract the images & 3D keypoint data

This step requires ffmpeg.

./scripts/extractAll.sh 171204_pose1_sample

This will extract images, for example 171204_pose1_sample/hdImgs/00_00/00_00_00000000.jpg, and the corresponding 3D skeleton data, for example 171204_pose1_sample/hdPose3d_stage1_coco19/body3DScene_00000000.json.

extractAll.sh is a simple script that combines the following set of commands (you shouldn't need to run these again):

cd 171204_pose1_sample
../scripts/vgaImgsExtractor.sh # PNG files from VGA video (25 fps)
../scripts/hdImgsExtractor.sh # PNG files from HD video (29.97 fps)
tar -xf vgaPose3d_stage1.tar # Extract skeletons at VGA framerate
tar -xf hdPose3d_stage1.tar # Extract skeletons for HD
cd ..

5. Run demo programs

Python

This codes require numpy, matplotlib.

Visualizing 3D keypoints (body, face, hand):

cd python
jupyter notebook demo_3Dkeypoints_3dview.ipynb

The result should look like this.

Reprojecting 3D keypoints (body, face, hand) on a selected HD view:

cd python
jupyter notebook demo_3Dkeypoints_reprojection_hd.ipynb

The result should look like this.

This codes require numpy, matplotlib.

Visualizing 3D keypoints (body, face, hand):

cd python
jupyter notebook demo_3Dkeypoints_3dview.ipynb

The result should look like this.

Reprojecting 3D keypoints (body, face, hand) on a selected HD view:

cd python
jupyter notebook demo_3Dkeypoints_reprojection_hd.ipynb

The result should look like this.

Python + OpengGL

  • This codes require pyopengl.

  • Visualizing 3D keypoints (body, face, hand):

python glViewer.py

Matlab

Note: Matlab code is outdated, and does not handle 3D keypoint outputs (coco19 body, face, hand). Please see this code only for reference. We will update this later.

Matlab example (outdated):

>>> cd matlab
>>> demo

Skeleton Output Format

We reconstruct 3D skeleton of people using the method of Joo et al. 2018.

The output of each frame is written in a json file. For example,

{ "version": 0.7, 
"univTime" :53541.542,
"fpsType" :"hd_29_97",
"bodies" :
[
{ "id": 0,
"joints19": [-19.4528, -146.612, 1.46159, 0.724274, -40.4564, -163.091, -0.521563, 0.575897, -14.9749, -91.0176, 4.24329, 0.361725, -19.2473, -146.679, -16.1136, 0.643555, -14.7958, -118.804, -20.6738, 0.619599, -22.611, -93.8793, -17.7834, 0.557953, -12.3267, -91.5465, -6.55368, 0.353241, -12.6556, -47.0963, -4.83599, 0.455566, -10.8069, -8.31645, -4.20936, 0.501312, -20.2358, -147.348, 19.1843, 0.628022, -13.1145, -120.269, 28.0371, 0.63559, -20.1037, -94.3607, 30.0809, 0.625916, -17.623, -90.4888, 15.0403, 0.327759, -17.3973, -46.9311, 15.9659, 0.419586, -13.1719, -7.60601, 13.4749, 0.519653, -38.7164, -166.851, -3.25917, 0.46228, -28.7043, -167.333, -7.15903, 0.523224, -39.0433, -166.677, 2.55916, 0.395965, -30.0718, -167.264, 8.18371, 0.510041]
}
] }

Here, each subject has the following values.

id: a unique subject index within a sequence:. Skeletons with the same id across time represent temporally associated moving skeletons (an individual). However, the same person may have multiple ids joints19: 19 3D joint locations, formatted as [x1,y1,z1,c1,x2,y2,z2,c2,...] where each c ispanopticHDjoint confidence score.

The 3D skeletons have the following keypoint order:

0: Neck
1: Nose
2: BodyCenter (center of hips)
3: lShoulder
4: lElbow
5: lWrist,
6: lHip
7: lKnee
8: lAnkle
9: rShoulder
10: rElbow
11: rWrist
12: rHip
13: rKnee
14: rAnkle
15: lEye
16: lEar
17: rEye
18: rEar

Note that this is different from OpenPose output order, although our method is based on it.

Note that we used to use an old format (named mpi15 as described in our outdated document), but we do not this format anymore.

KinopticStudio Toolbox

Kinoptic Studio is a subsystem of Panoptic Studio, which is composed of 10 Kinect2 sensors. Please see: README_kinoptic

Panoptic 3D PointCloud DB ver.1

You can download all sequences included in our 3D PointCloud DB ver.1 using the following script:

./scripts/getDB_ptCloud_ver1.sh

Haggling DB

We have released the processed data for the haggling sequence. Please see Social Signal Processing repository.

Teaser Image

License

Panoptic Studio Dataset is freely available for non-commercial and research purpose only.

References

By using the dataset, you agree to cite at least one of the following papers.

@inproceedings{Joo_2015_ICCV,
author = {Joo, Hanbyul and Liu, Hao and Tan, Lei and Gui, Lin and Nabbe, Bart and Matthews, Iain and Kanade, Takeo and Nobuhara, Shohei and Sheikh, Yaser},
title = {Panoptic Studio: A Massively Multiview System for Social Motion Capture},
booktitle = {ICCV},
year = {2015} }

@inproceedings{Joo_2017_TPAMI,
title={Panoptic Studio: A Massively Multiview System for Social Interaction Capture},
author={Joo, Hanbyul and Simon, Tomas and Li, Xulong and Liu, Hao and Tan, Lei and Gui, Lin and Banerjee, Sean and Godisart, Timothy Scott and Nabbe, Bart and Matthews, Iain and Kanade, Takeo and Nobuhara, Shohei and Sheikh, Yaser},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2017} }

@inproceedings{Simon_2017_CVPR,
title={Hand Keypoint Detection in Single Images using Multiview Bootstrapping},
author={Simon, Tomas and Joo, Hanbyul and Sheikh, Yaser},
journal={CVPR},
year={2017} }

@inproceedings{joo2019ssp,
  title={Towards Social Artificial Intelligence: Nonverbal Social Signal Prediction in A Triadic Interaction},
  author={Joo, Hanbyul and Simon, Tomas and Cikara, Mina and Sheikh, Yaser},
  booktitle={CVPR},
  year={2019}
}



Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
Web-interface + rest API for classification and regression (https://jeff1evesque.github.io/machine-learning.docs)

Machine Learning This project provides a web-interface, as well as a programmatic-api for various machine learning algorithms. Supported algorithms: S

Jeff Levesque 252 Dec 11, 2022
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022

PyCRE Conflict-aware Inference of Python Compatible Runtime Environments with Domain Knowledge Graph, ICSE 2022 Dependencies This project is developed

<a href=[email protected]"> 7 May 06, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
Few-NERD: Not Only a Few-shot NER Dataset

Few-NERD: Not Only a Few-shot NER Dataset This is the source code of the ACL-IJCNLP 2021 paper: Few-NERD: A Few-shot Named Entity Recognition Dataset.

THUNLP 319 Dec 30, 2022
DA2Lite is an automated model compression toolkit for PyTorch.

DA2Lite (Deep Architecture to Lite) is a toolkit to compress and accelerate deep network models. ⭐ Star us on GitHub — it helps!! Frameworks & Librari

Sinhan Kang 7 Mar 22, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
《Lerning n Intrinsic Grment Spce for Interctive Authoring of Grment Animtion》

Learning an Intrinsic Garment Space for Interactive Authoring of Garment Animation Overview This is the demo code for training a motion invariant enco

YuanBo 213 Dec 14, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Code for "ATISS: Autoregressive Transformers for Indoor Scene Synthesis", NeurIPS 2021

ATISS: Autoregressive Transformers for Indoor Scene Synthesis This repository contains the code that accompanies our paper ATISS: Autoregressive Trans

138 Dec 22, 2022
Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models.

Advbox is a toolbox to generate adversarial examples that fool neural networks in PaddlePaddle、PyTorch、Caffe2、MxNet、Keras、TensorFlow and Advbox can benchmark the robustness of machine learning models

AdvBox 1.3k Dec 25, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022