Code to train models from "Paraphrastic Representations at Scale".

Overview

Paraphrastic Representations at Scale

Code to train models from "Paraphrastic Representations at Scale".

The code is written in Python 3.7 and requires H5py, jieba, numpy, scipy, sentencepiece, sacremoses, and PyTorch >= 1.0 libraries. These can be insalled with the following command:

pip install -r requirements.txt

To get started, download the data files used for training from http://www.cs.cmu.edu/~jwieting and download the STS evaluation data:

wget http://phontron.com/data/paraphrase-at-scale.zip
unzip paraphrase-at-scale.zip
rm paraphrase-at-scale.zip
wget http://www.cs.cmu.edu/~jwieting/STS.zip .
unzip STS.zip
rm STS.zip

If you use our code, models, or data for your work please cite:

@article{wieting2021paraphrastic,
    title={Paraphrastic Representations at Scale},
    author={Wieting, John and Gimpel, Kevin and Neubig, Graham and Berg-Kirkpatrick, Taylor},
    journal={arXiv preprint arXiv:2104.15114},
    year={2021}
}

@inproceedings{wieting19simple,
    title={Simple and Effective Paraphrastic Similarity from Parallel Translations},
    author={Wieting, John and Gimpel, Kevin and Neubig, Graham and Berg-Kirkpatrick, Taylor},
    booktitle={Proceedings of the Association for Computational Linguistics},
    url={https://arxiv.org/abs/1909.13872},
    year={2019}
}

To embed a list of sentences:

python -u embed_sentences.py --sentence-file paraphrase-at-scale/example-sentences.txt --load-file paraphrase-at-scale/model.para.lc.100.pt  --sp-model paraphrase-at-scale/paranmt.model --output-file sentence_embeds.np --gpu 0

To score a list of sentence pairs:

python -u score_sentence_pairs.py --sentence-pair-file paraphrase-at-scale/example-sentences-pairs.txt --load-file paraphrase-at-scale/model.para.lc.100.pt  --sp-model paraphrase-at-scale/paranmt.model --gpu 0

To train a model (for example, on ParaNMT):

python -u main.py --outfile model.para.out --lower-case 1 --tokenize 0 --data-file paraphrase-at-scale/paranmt.sim-low=0.4-sim-high=1.0-ovl=0.7.final.h5 \
       --model avg --dim 1024 --epochs 25 --dropout 0.0 --sp-model paraphrase-at-scale/paranmt.model --megabatch-size 100 --save-every-epoch 1 --gpu 0 --vocab-file paraphrase-at-scale/paranmt.sim-low=0.4-sim-high=1.0-ovl=0.7.final.vocab

To download and preprocess raw data for training models (both bilingual and ParaNMT), see preprocess/bilingual and preprocess/paranmt.

Owner
John Wieting
John Wieting
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
HiFi++: a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement

HiFi++ : a Unified Framework for Neural Vocoding, Bandwidth Extension and Speech Enhancement This is the unofficial implementation of Vocoder part of

Rishikesh (ऋषिकेश) 118 Dec 29, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Diverse graph algorithms implemented using JGraphT library.

# 1. Installing Maven & Pandas First, please install Java (JDK11) and Python 3 if they are not already. Next, make sure that Maven (for importing J

See Woo Lee 3 Dec 17, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
PixelPyramids: Exact Inference Models from Lossless Image Pyramids (ICCV 2021)

PixelPyramids: Exact Inference Models from Lossless Image Pyramids This repository contains the PyTorch implementation of the paper PixelPyramids: Exa

Visual Inference Lab @TU Darmstadt 8 Dec 11, 2022
Tensorflow 2.x implementation of Panoramic BlitzNet for object detection and semantic segmentation on indoor panoramic images.

Deep neural network for object detection and semantic segmentation on indoor panoramic images. The implementation is based on the papers:

Alejandro de Nova Guerrero 9 Nov 24, 2022
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
A Temporal Extension Library for PyTorch Geometric

Documentation | External Resources | Datasets PyTorch Geometric Temporal is a temporal (dynamic) extension library for PyTorch Geometric. The library

Benedek Rozemberczki 1.9k Jan 07, 2023
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
QAT(quantize aware training) for classification with MQBench

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
Fast Neural Representations for Direct Volume Rendering

Fast Neural Representations for Direct Volume Rendering Sebastian Weiss, Philipp Hermüller, Rüdiger Westermann This repository contains the code and s

Sebastian Weiss 20 Dec 03, 2022
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022