Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

Overview

GNet-pose

Project Page: http://guanghan.info/projects/guided-fractal/

UPDATE 9/27/2018:

Prototxts and model that achieved 93.9Pck on LSP dataset. http://guanghan.info/download/Data/GNet_update.zip

When I was replying e-mails, it occurred to me that the models that I had uploaded was around May/June 2017 (performance in old arxiv version), and in August 2017 the performance was improved to 93.9 on LSP with a newer caffe version which fixed the downsampling and/or upsampling deprecation problem (Yeah, it "magically" improved the performance). The best model was 94.0071 on LSP dataset, but it was not uploaded nor published on the benchmark.


Overview

Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

Source code release of the paper for reproduction of experimental results, and to aid researchers in future research.


Prerequisites


Getting Started

1. Download Data and Pre-trained Models

  • Datasets (MPII [1], LSP [2])

    bash ./get_dataset.sh
    
  • Models

    bash ./get_models.sh
    
  • Predictions (optional)

    bash ./get_preds.sh
    

2. Testing

  • Generate cropped patches from the dataset for testing:

    cd testing/
    matlab gen_cropped_LSP_test_images.m
    matlab gen_cropped_MPII_test_images.m
    cd -
    

    This will generate images with 368-by-368 resolution.

  • Reproduce the results with the pre-trained model:

    cd testing/
    python .test.py
    cd -
    

    You can choose different dataset to test on, with different models. You can also choose different settings in test.py, e.g., with or without flipping, scaling, cross-heatmap regression, etc.

3. Training

  • Generate Annotations

    cd training/Annotations/
    matlab MPI.m LEEDS.m
    cd -
    

    This will generate annotations in json files.

  • Generate LMDB

    python ./training/Data/genLMDB.py
    

    This will load images from dataset and annotations from json files, and generate lmdb files for caffe training.

  • Generate Prototxt files (optional)

    python ./training/GNet/scripts/gen_GNet.py
    python ./training/GNet/scripts/gen_fractal.py
    python ./training/GNet/scripts/gen_hourglass.py
    
  • Training:

     bash ./training/train.sh
    

4. Performance Evaluation

cd testing/eval_LSP/; matlab test_evaluation_lsp.m; cd../

cd testing/eval_MPII/; matlab test_evaluation_mpii_test.m

5. Results

More Qualitative results can be found in the project page. Quantitative results please refer to the arxiv paper.


License

GNet-pose is released under the Apache License Version 2.0 (refer to the LICENSE file for details).


Citation

If you use the code and models, please cite the following paper: TMM 2017.

@article{ning2017knowledge, 
 author={G. Ning and Z. Zhang and Z. He}, 
     journal={IEEE Transactions on Multimedia}, 
     title={Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation}, 
     year={2017}, 
     doi={10.1109/TMM.2017.2762010}, 
     ISSN={1520-9210}, }

Reference

[1] Andriluka M, Pishchulin L, Gehler P, et al. "2d human pose estimation: New benchmark and state of the art analysis." CVPR (2014).

[2] Sam Johnson and Mark Everingham. "Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation." BMVC (2010).

Owner
Guanghan Ning
Guanghan Ning
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
Code for the paper Relation Prediction as an Auxiliary Training Objective for Improving Multi-Relational Graph Representations (AKBC 2021).

Relation Prediction as an Auxiliary Training Objective for Knowledge Base Completion This repo provides the code for the paper Relation Prediction as

Facebook Research 85 Jan 02, 2023
Unofficial PyTorch implementation of Google AI's VoiceFilter system

VoiceFilter Note from Seung-won (2020.10.25) Hi everyone! It's Seung-won from MINDs Lab, Inc. It's been a long time since I've released this open-sour

MINDs Lab 883 Jan 07, 2023
The modify PyTorch version of Siam-trackers which are speed-up by TensorRT.

SiamTracker-with-TensorRT The modify PyTorch version of Siam-trackers which are speed-up by TensorRT or ONNX. [Updating...] Examples demonstrating how

9 Dec 13, 2022
Generate high quality pictures. GAN. Generative Adversarial Networks

ESRGAN generate high quality pictures. GAN. Generative Adversarial Networks """ Super-resolution of CelebA using Generative Adversarial Networks. The

Lieon 1 Dec 14, 2021
The official PyTorch implementation of paper BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition Boyan Zhou, Quan Cui, Xiu-Shen Wei*, Zhao-Min Chen This repo

Megvii-Nanjing 616 Dec 21, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Official code for "Mean Shift for Self-Supervised Learning"

MSF Official code for "Mean Shift for Self-Supervised Learning" Requirements Python = 3.7.6 PyTorch = 1.4 torchvision = 0.5.0 faiss-gpu = 1.6.1 In

UMBC Vision 44 Nov 21, 2022
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023