Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

Overview

GNet-pose

Project Page: http://guanghan.info/projects/guided-fractal/

UPDATE 9/27/2018:

Prototxts and model that achieved 93.9Pck on LSP dataset. http://guanghan.info/download/Data/GNet_update.zip

When I was replying e-mails, it occurred to me that the models that I had uploaded was around May/June 2017 (performance in old arxiv version), and in August 2017 the performance was improved to 93.9 on LSP with a newer caffe version which fixed the downsampling and/or upsampling deprecation problem (Yeah, it "magically" improved the performance). The best model was 94.0071 on LSP dataset, but it was not uploaded nor published on the benchmark.


Overview

Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

Source code release of the paper for reproduction of experimental results, and to aid researchers in future research.


Prerequisites


Getting Started

1. Download Data and Pre-trained Models

  • Datasets (MPII [1], LSP [2])

    bash ./get_dataset.sh
    
  • Models

    bash ./get_models.sh
    
  • Predictions (optional)

    bash ./get_preds.sh
    

2. Testing

  • Generate cropped patches from the dataset for testing:

    cd testing/
    matlab gen_cropped_LSP_test_images.m
    matlab gen_cropped_MPII_test_images.m
    cd -
    

    This will generate images with 368-by-368 resolution.

  • Reproduce the results with the pre-trained model:

    cd testing/
    python .test.py
    cd -
    

    You can choose different dataset to test on, with different models. You can also choose different settings in test.py, e.g., with or without flipping, scaling, cross-heatmap regression, etc.

3. Training

  • Generate Annotations

    cd training/Annotations/
    matlab MPI.m LEEDS.m
    cd -
    

    This will generate annotations in json files.

  • Generate LMDB

    python ./training/Data/genLMDB.py
    

    This will load images from dataset and annotations from json files, and generate lmdb files for caffe training.

  • Generate Prototxt files (optional)

    python ./training/GNet/scripts/gen_GNet.py
    python ./training/GNet/scripts/gen_fractal.py
    python ./training/GNet/scripts/gen_hourglass.py
    
  • Training:

     bash ./training/train.sh
    

4. Performance Evaluation

cd testing/eval_LSP/; matlab test_evaluation_lsp.m; cd../

cd testing/eval_MPII/; matlab test_evaluation_mpii_test.m

5. Results

More Qualitative results can be found in the project page. Quantitative results please refer to the arxiv paper.


License

GNet-pose is released under the Apache License Version 2.0 (refer to the LICENSE file for details).


Citation

If you use the code and models, please cite the following paper: TMM 2017.

@article{ning2017knowledge, 
 author={G. Ning and Z. Zhang and Z. He}, 
     journal={IEEE Transactions on Multimedia}, 
     title={Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation}, 
     year={2017}, 
     doi={10.1109/TMM.2017.2762010}, 
     ISSN={1520-9210}, }

Reference

[1] Andriluka M, Pishchulin L, Gehler P, et al. "2d human pose estimation: New benchmark and state of the art analysis." CVPR (2014).

[2] Sam Johnson and Mark Everingham. "Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation." BMVC (2010).

Owner
Guanghan Ning
Guanghan Ning
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
[CVPR 2021] A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts

Visual-Reasoning-eXplanation [CVPR 2021 A Peek Into the Reasoning of Neural Networks: Interpreting with Structural Visual Concepts] Project Page | Vid

Andy_Ge 54 Dec 21, 2022
Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis

Readme File for "Using Machine Learning to Test Causal Hypotheses in Conjoint Analysis" by Ham, Imai, and Janson. (2022) All scripts were written and

0 Jan 27, 2022
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
OpenIPDM is a MATLAB open-source platform that stands for infrastructures probabilistic deterioration model

Open-Source Toolbox for Infrastructures Probabilistic Deterioration Modelling OpenIPDM is a MATLAB open-source platform that stands for infrastructure

CIVML 0 Jan 20, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Resilient projection-based consensus actor-critic (RPBCAC) algorithm

Resilient projection-based consensus actor-critic (RPBCAC) algorithm We implement the RPBCAC algorithm with nonlinear approximation from [1] and focus

Martin Figura 5 Jul 12, 2022
This is the official implementation of "One Question Answering Model for Many Languages with Cross-lingual Dense Passage Retrieval".

CORA This is the official implementation of the following paper: Akari Asai, Xinyan Yu, Jungo Kasai and Hannaneh Hajishirzi. One Question Answering Mo

Akari Asai 59 Dec 28, 2022
Equivariant Imaging: Learning Beyond the Range Space

[Project] Equivariant Imaging: Learning Beyond the Range Space Project about the

Georges Le Bellier 3 Feb 06, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022