Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Overview

Follow the development of our desktop client here

Paaster

Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Preview

Video of paaster in action! Mobile preview

Features

Looking to build a client for paaster?

Check out our Integration documentation

Security

What is E2EE?

E2EE or end to end encryption is a zero trust encryption methodology. When you paste code into paaster the code is encrypted locally with a secret generated on your browser. This secret is never shared with the server & only people you share the link with can view the paste.

Can I trust a instance of paaster not hosted by me?

No. Anyone could modify the functionality of paaster to expose your secret key to the server. We recommend using a instance you host or trust.

How are client secrets stored?

Client-sided secrets are stored in localStorage on paste creation (for paste history.) Anything else would be retrievable by the server or be overly complicated. This does make paaster vulnerable to malicious javascript being executed, but this would require malicious javascript to be present when the svelte application is built. If this was the case you'd have bigger issues, like the module just reading all inputs & getting the plain text paste.

How are client secrets transported?

Paaster uses URI fragments to transport secrets, according to the Mozilla foundation URI fragments aren't meant to be sent to the server. Bitwarden also has a article covering this usage here.

How are server secrets stored?

Server-sided secrets are stored in localStorage on paste creation, allowing you to modify or delete pastes later on. Server-sided secrets are generated on the server using the python secrets module & are stored in the database using bcrypt hashing.

Cipher

paaster is built using the forge module, using AES-256 in CBC mode with PKCS7 padding & PBKDF2 key derivation at 50,000 iterations. More details are located in our Integration documentation.

Shortcuts

  • Ctrl+V - Paste code.
  • Ctrl+S - Download code as file.
  • Ctrl+A - Copy all code to clipboard.
  • Ctrl+X - Copy URL to clipboard.

Requesting features

  • Open a new issue to request a feature (one issue per feature.)

What we won't add

  • Paste editing.
    • paaster isn't a text editor, it's a pastebin.
  • Paste button.
    • paaster isn't a text editor, when code is inputted it will always be automatically uploaded.
  • Optional encryption.
    • paaster will never have opt-in / opt-out encryption, encryption will always be present.

Setup

Production with Docker

  • git clone --branch Production https://github.com/WardPearce/paaster
  • Configure docker-compose.yml
  • Proxy exposed ports using Nginx (or whatever reverse proxy you prefer.)
  • FRONTEND_PROXIED should be the proxied address for "paaster_frontend". E.g. for paaster.io this is "https://paaster.io"
  • VITE_BACKEND should be the proxied address for "paaster_starlette". E.g. for paaster.io this is "https://api.paaster.io"
  • sudo docker-compose build; sudo docker-compose up -d

Using Rclone

Using rclone with Docker Compose

Basically the most important part is to install fuse, create /var/lib/docker-plugins/rclone/config & /var/lib/docker-plugins/rclone/cache, install the docker plugin docker plugin install rclone/docker-volume-rclone:amd64 args="-v" --alias rclone --grant-all-permissions, configure the rclone.conf for the storage service you want to use & then configure your docker compose to use the rclone volume. Example rclone docker compose.

Production without docker

This setup is not recommended & requires more research / knowledge.

  • git clone --branch Production https://github.com/WardPearce/paaster.
  • cd paaster-frontend
  • Create .env
    • VITE_NAME - The name displayed on the website.
    • VITE_BACKEND - The URL of the API.
  • Install nodejs
    • npm install
    • npm run build
  • Serve files generated in dist with Nginx (or whatever reverse proxy you use.)
  • cd paaster-backend
  • Install Python 3.7+
    • pip3 install -r requirements.txt
    • Configure main.py following the guide for uvicorn.
  • Pass environmental variables
    • REDIS_HOST
    • REDIS_PORT
    • MONGO_IP
    • MONGO_PORT
    • MONGO_DB
    • FRONTEND_PROXIED - The URL of the Frontend.
  • Proxy port with Nginx (or whatever reverse proxy you use.)

Development

  • git clone https://github.com/WardPearce/paaster.
  • cd paaster-frontend
  • Create .env
    • VITE_NAME - The name displayed on the website.
    • VITE_BACKEND - The URL of the API.
  • Install nodejs
    • npm install
    • npm run dev
  • cd paaster-backend
  • Pass environmental variables
    • REDIS_HOST
    • REDIS_PORT
    • MONGO_IP
    • MONGO_PORT
    • MONGO_DB
    • FRONTEND_PROXIED - The URL of the Frontend.
  • Install Python 3.7+
    • pip3 install -r requirements.txt
    • Run main.py
Owner
Ward
Privacy advocate & open source developer
Ward
Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models

Patch-Rotation(PatchRot) Patch Rotation: A Self-Supervised Auxiliary Task for Robustness and Accuracy of Supervised Models Submitted to Neurips2021 To

4 Jul 12, 2021
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Internship Assessment Task for BaggageAI.

BaggageAI Internship Task Problem Statement: You are given two sets of images:- background and threat objects. Background images are the background x-

Arya Shah 10 Nov 14, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
Cluttered MNIST Dataset

Cluttered MNIST Dataset A setup script will download MNIST and produce mnist/*.t7 files: luajit download_mnist.lua Example usage: local mnist_clutter

DeepMind 50 Jul 12, 2022
A fast model to compute optical flow between two input images.

DCVNet: Dilated Cost Volumes for Fast Optical Flow This repository contains our implementation of the paper: @InProceedings{jiang2021dcvnet, title={

Huaizu Jiang 8 Sep 27, 2021
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022
Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation

Unrestricted Facial Geometry Reconstruction Using Image-to-Image Translation [Arxiv] [Video] Evaluation code for Unrestricted Facial Geometry Reconstr

Matan Sela 242 Dec 30, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
Implementation of ReSeg using PyTorch

Implementation of ReSeg using PyTorch ReSeg: A Recurrent Neural Network-based Model for Semantic Segmentation Pascal-Part Annotations Pascal VOC 2010

Onur Kaplan 46 Nov 23, 2022
A curated list of awesome neural radiance fields papers

Awesome Neural Radiance Fields A curated list of awesome neural radiance fields papers, inspired by awesome-computer-vision. How to submit a pull requ

Yen-Chen Lin 3.9k Dec 27, 2022
A PyTorch implementation of "TokenLearner: What Can 8 Learned Tokens Do for Images and Videos?"

TokenLearner: What Can 8 Learned Tokens Do for Images and Videos? Source: Improving Vision Transformer Efficiency and Accuracy by Learning to Tokenize

Caiyong Wang 14 Sep 20, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
Boost learning for GNNs from the graph structure under challenging heterophily settings. (NeurIPS'20)

Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu,

GEMS Lab: Graph Exploration & Mining at Scale, University of Michigan 70 Dec 18, 2022