Datasets for new state-of-the-art challenge in disentanglement learning

Overview

High resolution disentanglement datasets

This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for controllable generation in terms of image resolution, photorealism, and richness of style factors, as compared to existing disentanglement datasets.

Falor3D

The Falcor3D dataset consists of 233,280 images based on the 3D scene of a living room, where each image has a resolution of 1024x1024. The meta code corresponds to all possible combinations of 7 factors of variation:

  • lighting_intensity (5)
  • lighting_x-dir (6)
  • lighting_y-dir (6)
  • lighting_z-dir (6)
  • camera_x-pos (6)
  • camera_y-pos (6)
  • camera_z-pos (6)

Note that the number m behind each factor represents that the factor has m possible values, uniformly sampled in the normalized range of variations [0, 1].

Each image has as filename padded_index.png where

index = lighting_intensity * 46656 + lighting_x-dir * 7776 + lighting_y-dir * 1296 + 
lighting_z-dir * 216 + camera_x-pos * 36 + camera_y-pos * 6 + camera_z-pos

padded_index = index padded with zeros such that it has 6 digits.

To see the Falcor3D images by varying each factor of variation individually, you can run

python dataset_demo.py --dataset Falor3D

and the results are saved in the examples/falcor3d_samples folder.

You can also check out the Falcor3D images here: falcor3d_samples_demo, which includes all the ground-truth latent traversals.

Isaac3D

The Isaac3D dataset consists of 737,280 images, based on the 3D scene of a kitchen, where each image has a resolution of 512x512. The meta code corresponds to all possible combinations of 9 factors of variation:

  • object_shape (3)
  • object_scale (4)
  • camera_height (4)
  • robot_x-movement (8)
  • robot_y-movement (5)
  • lighting_intensity (4)
  • lighting_y-dir (6)
  • object_color (4)
  • wall_color (4)

Similarly, the number m behind each factor represents that the factor has m possible values, uniformly sampled in the normalized range of variations [0, 1].

Each image has as filename padded_index.png where

index = object_shape * 245760 + object_scale * 30720 + camera_height * 6144 + 
robot_x-movement * 1536 + robot_y-movement * 384 + lighting_intensity * 96 + 
lighting_y-dir * 16 + object_color * 4 + wall color

padded_index = index padded with zeros such that it has 6 digits.

To see the Isaac3D images by varying each factor of variation individually, you can run

python dataset_demo.py --dataset Isaac3D

and the results are saved in the examples/isaac3d_samples folder.

You can also check out the Isaac3D images here: isaac3d_samples_demo, which includes all the ground-truth latent traversals.

Links to datasets

The two datasets can be downloaded from Google Drive:

  • Falcor3D (98 GB): link
  • Isaac3D (190 GB): link

Besides, we also provide a downsampled version (resolution 128x128) of the two datasets:

  • Falcor3D_128x128 (3.7 GB): link
  • Isaac3D_128x128 (13 GB): link

License

This work is licensed under a Creative Commons Attribution 4.0 International License by NVIDIA Corporation (https://creativecommons.org/licenses/by/4.0/).

Owner
NVIDIA Research Projects
NVIDIA Research Projects
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
DGCNN - Dynamic Graph CNN for Learning on Point Clouds

DGCNN is the author's re-implementation of Dynamic Graph CNN, which achieves state-of-the-art performance on point-cloud-related high-level tasks including category classification, semantic segmentat

Wang, Yue 1.3k Dec 26, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
Improving Deep Network Debuggability via Sparse Decision Layers

Improving Deep Network Debuggability via Sparse Decision Layers This repository contains the code for our paper: Leveraging Sparse Linear Layers for D

Madry Lab 35 Nov 14, 2022
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Rendering color and depth images for ShapeNet models.

Color & Depth Renderer for ShapeNet This library includes the tools for rendering multi-view color and depth images of ShapeNet models. Physically bas

Yinyu Nie 41 Dec 19, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
RRxIO - Robust Radar Visual/Thermal Inertial Odometry: Robust and accurate state estimation even in challenging visual conditions.

RRxIO - Robust Radar Visual/Thermal Inertial Odometry RRxIO offers robust and accurate state estimation even in challenging visual conditions. RRxIO c

Christopher Doer 64 Dec 29, 2022
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
Intrusion Detection System using ensemble learning (machine learning)

IDS-ML implementation of an intrusion detection system using ensemble machine learning methods Data set This project is carried out using the UNSW-15

4 Nov 25, 2022
Semantic Segmentation for Aerial Imagery using Convolutional Neural Network

This repo has been deprecated because whole things are re-implemented by using Chainer and I did refactoring for many codes. So please check this newe

Shunta Saito 27 Sep 23, 2022