Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

Overview

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation

License: MIT

[OpenReview] [arXiv] [Code]

The official implementation of GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022 Oral Presentation [54/3391]).

cover

Environments

Install via Conda (Recommended)

# Clone the environment
conda env create -f env.yml
# Activate the environment
conda activate geodiff
# Install PyG
conda install pytorch-geometric=1.7.2=py37_torch_1.8.0_cu102 -c rusty1s -c conda-forge

Dataset

Offical Dataset

The offical raw GEOM dataset is avaiable [here].

Preprocessed dataset

We provide the preprocessed datasets (GEOM) in this [google drive folder]. After downleading the dataset, it should be put into the folder path as specified in the dataset variable of config files ./configs/*.yml.

Prepare your own GEOM dataset from scratch (optional)

You can also download origianl GEOM full dataset and prepare your own data split. A guide is available at previous work ConfGF's [github page].

Training

All hyper-parameters and training details are provided in config files (./configs/*.yml), and free feel to tune these parameters.

You can train the model with the following commands:

# Default settings
python train.py ./config/qm9_default.yml
python train.py ./config/drugs_default.yml
# An ablation setting with fewer timesteps, as described in Appendix D.2.
python train.py ./config/drugs_1k_default.yml

The model checkpoints, configuration yaml file as well as training log will be saved into a directory specified by --logdir in train.py.

Generation

We provide the checkpoints of two trained models, i.e., qm9_default and drugs_default in the [google drive folder]. Note that, please put the checkpoints *.pt into paths like ${log}/${model}/checkpoints/, and also put corresponding configuration file *.yml into the upper level directory ${log}/${model}/.

Attention: if you want to use pretrained models, please use the code at the pretrain branch, which is the vanilla codebase for reproducing the results with our pretrained models. We recently notice some issue of the codebase and update it, making the main branch not compatible well with the previous checkpoints.

You can generate conformations for entire or part of test sets by:

python test.py ${log}/${model}/checkpoints/${iter}.pt \
    --start_idx 800 --end_idx 1000

Here start_idx and end_idx indicate the range of the test set that we want to use. All hyper-parameters related to sampling can be set in test.py files. Specifically, for testing qm9 model, you could add the additional arg --w_global 0.3, which empirically shows slightly better results.

Conformations of some drug-like molecules generated by GeoDiff are provided below.

Evaluation

After generating conformations following the obove commands, the results of all benchmark tasks can be calculated based on the generated data.

Task 1. Conformation Generation

The COV and MAT scores on the GEOM datasets can be calculated using the following commands:

python eval_covmat.py ${log}/${model}/${sample}/sample_all.pkl

Task 2. Property Prediction

For the property prediction, we use a small split of qm9 different from the Conformation Generation task. This split is also provided in the [google drive folder]. Generating conformations and evaluate mean absolute errors (MAR) metric on this split can be done by the following commands:

python ${log}/${model}/checkpoints/${iter}.pt --num_confs 50 \
      --start_idx 0 --test_set data/GEOM/QM9/qm9_property.pkl
python eval_prop.py --generated ${log}/${model}/${sample}/sample_all.pkl

Visualizing molecules with PyMol

Here we also provide a guideline for visualizing molecules with PyMol. The guideline is borrowed from previous work ConfGF's [github page].

Start Setup

  1. pymol -R
  2. Display - Background - White
  3. Display - Color Space - CMYK
  4. Display - Quality - Maximal Quality
  5. Display Grid
    1. by object: use set grid_slot, int, mol_name to put the molecule into the corresponding slot
    2. by state: align all conformations in a single slot
    3. by object-state: align all conformations and put them in separate slots. (grid_slot dont work!)
  6. Setting - Line and Sticks - Ball and Stick on - Ball and Stick ratio: 1.5
  7. Setting - Line and Sticks - Stick radius: 0.2 - Stick Hydrogen Scale: 1.0

Show Molecule

  1. To show molecules

    1. hide everything
    2. show sticks
  2. To align molecules: align name1, name2

  3. Convert RDKit mol to Pymol

    from rdkit.Chem import PyMol
    v= PyMol.MolViewer()
    rdmol = Chem.MolFromSmiles('C')
    v.ShowMol(rdmol, name='mol')
    v.SaveFile('mol.pkl')

Citation

Please consider citing the our paper if you find it helpful. Thank you!

@inproceedings{
xu2022geodiff,
title={GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation},
author={Minkai Xu and Lantao Yu and Yang Song and Chence Shi and Stefano Ermon and Jian Tang},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=PzcvxEMzvQC}
}

Acknowledgement

This repo is built upon the previous work ConfGF's [codebase]. Thanks Chence and Shitong!

Contact

If you have any question, please contact me at [email protected] or [email protected].

Known issues

  1. The current codebase is not compatible with more recent torch-geometric versions.
  2. The current processed dataset (with PyD data object) is not compatible with more recent torch-geometric versions.
Owner
Minkai Xu
Research [email protected]. Previous:
Minkai Xu
Computer Vision application in the web

Computer Vision application in the web Preview Usage Clone this repo git clone https://github.com/amineHY/WebApp-Computer-Vision-streamlit.git cd Web

Amine Hadj-Youcef. PhD 35 Dec 06, 2022
Controlling a game using mediapipe hand tracking

These scripts use the Google mediapipe hand tracking solution in combination with a webcam in order to send game instructions to a racing game. It features 2 methods of control

3 May 17, 2022
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

27 Dec 01, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
PyTorch implementation of "Contrast to Divide: self-supervised pre-training for learning with noisy labels"

Contrast to Divide: self-supervised pre-training for learning with noisy labels This is an official implementation of "Contrast to Divide: self-superv

55 Nov 23, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
My usage of Real-ESRGAN to upscale anime, some test and results in the test_img folder

anime upscaler My usage of Real-ESRGAN to upscale anime, I hope to use this on a proper GPU cuz doing this on CPU is completely shit 😂 , I even tried

Shangar Muhunthan 29 Jan 07, 2023
A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

A Tensorflow implementation of the Text Conditioned Auxiliary Classifier Generative Adversarial Network for Generating Images from text descriptions

Ayushman Dash 93 Aug 04, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022