CATE: Computation-aware Neural Architecture Encoding with Transformers

Overview

CATE: Computation-aware Neural Architecture Encoding with Transformers

Code for paper:

CATE: Computation-aware Neural Architecture Encoding with Transformers
Shen Yan, Kaiqiang Song, Fei Liu, Mi Zhang.
ICML 2021 (Long Talk).

CATE
Overview of CATE: It takes computationally similar architecture pairs as the input and trained to predict masked operators given the pairwise computation information. Apart from the cross-attention blocks, the pretrained Transformer encoder is used to extract architecture encodings for the downstream search.

The repository is built upon pybnn and nas-encodings.

Requirements

conda create -n tf python=3.7
source activate tf
cat requirements.txt | xargs -n 1 -L 1 pip install

Experiments on NAS-Bench-101

Dataset preparation on NAS-Bench-101

Install nasbench and download nasbench_only108.tfrecord in ./data folder.

python preprocessing/gen_json.py

Data will be saved in ./data/nasbench101.json.

Generate architecture pairs

python preprocessing/data_generate.py --dataset nasbench101 --flag extract_seq
python preprocessing/data_generate.py --dataset nasbench101 --flag build_pair --k 2 --d 2000000 --metric params

The corresponding training data and pairs will be saved in ./data/nasbench101/.

Alternatively, you can download the data train_data.pt, test_data.pt and pair indices train_pair_k2_d2000000_metric_params.pt, test_pair_k2_d2000000_metric_params.pt from here.

Pretraining

bash run_scripts/pretrain_nasbench101.sh

The pretrained models will be saved in ./model/.

Alternatively, you can download the pretrained model nasbench101_model_best.pth from here.

Extract the pretrained encodings

python inference/inference.py --pretrained_path model/nasbench101_model_best.pth.tar --train_data data/nasbench101/train_data.pt --valid_data data/nasbench101/test_data.pt --dataset nasbench101

The extracted embeddings will be saved in ./cate_nasbench101.pt.

Alternatively, you can download the pretrained embeddings cate_nasbench101.pt from here.

Run search experiments on NAS-Bench-101

bash run_scripts/run_search_nasbench101.sh

Search results will be saved in ./nasbench101/.

Experiments on NAS-Bench-301

Dataset preparation

Install nasbench301 and download the xgb_v1.0 and lgb_runtime_v1.0 file. You may need to make pytorch_geometric compatible with Pytorch and CUDA version.

python preprocessing/gen_json_darts.py # randomly sample 1,000,000 archs

Data will be saved in ./data/nasbench301_proxy.json.

Alternatively, you can download the json file nasbench301_proxy.json from here.

Generate architecture pairs

python preprocessing/data_generate.py --dataset nasbench301 --flag extract_seq
python preprocessing/data_generate.py --dataset nasbench301 --flag build_pair --k 1 --d 5000000 --metric flops

The correspoding training data and pairs will be saved in ./data/nasbench301/.

Alternatively, you can download the data train_data.pt, test_data.pt and pair indices train_pair_k1_d5000000_metric_flops.pt, test_pair_k1_d5000000_metric_flops.pt from here.

Pretraining

bash run_scripts/pretrain_nasbench301.sh

The pretrained models will be saved in ./model/.

Alternatively, you can download the pretrained model nasbench301_model_best.pth from here.

Extract the pretrained encodings

python inference/inference.py --pretrained_path model/nasbench301_model_best.pth.tar --train_data data/nasbench301/train_data.pt --valid_data data/nasbench301/test_data.pt --dataset nasbench301 --n_vocab 11

The extracted encodings will be saved in ./cate_nasbench301.pt.

Alternatively, you can download the pretrained embeddings cate_nasbench301.pt from here.

Run search experiments on NAS-Bench-301

bash run_scripts/run_search_nasbench301.sh

Search results will be saved in ./nasbench301/.

DARTS experiments without surrogate models

Download the pretrained embeddings cate_darts.pt from here.

python search_methods/dngo_ls_darts.py --dim 64 --init_size 16 --topk 5 --dataset darts --output_path bo  --embedding_path cate_darts.pt

Search log will be saved in ./darts/. Final search result will be saved in ./darts/bo/dim64.

Evaluate the learned cell on DARTS Search Space on CIFAR-10

python darts/cnn/train.py --auxiliary --cutout --arch cate_small
python darts/cnn/train.py --auxiliary --cutout --arch cate_large
  • Expected results (CATE-Small): 2.55% avg. test error with 3.5M model params.
  • Expected results (CATE-Large): 2.46% avg. test error with 4.1M model params.

Transfer learning on ImageNet

python darts/cnn/train_imagenet.py  --arch cate_small --seed 1 
python darts/cnn/train_imagenet.py  --arch cate_large --seed 1
  • Expected results (CATE-Small): 26.05% test error with 5.0M model params and 556M mult-adds.
  • Expected results (CATE-Large): 25.01% test error with 5.8M model params and 642M mult-adds.

Visualize the learned cell

python darts/cnn/visualize.py cate_small
python darts/cnn/visualize.py cate_large

Experiments on outside search space

Build outside search space dataset

bash run_scripts/generate_oo.sh

Data will be saved in ./data/nasbench101_oo_train.json and ./data/nasbench101_oo_test.json.

Generate architecture pairs

python preprocessing/data_generate_oo.py --flag extract_seq
python preprocessing/data_generate_oo.py --flag build_pair

The corresponding training data and pair indices will be saved in ./data/nasbench101/.

Pretraining

python run.py --do_train --parallel --train_data data/nasbench101/nasbench101_oo_trainSet_train.pt --train_pair data/nasbench101/oo_train_pairs_k2_params_dist2e6.pt  --valid_data data/nasbench101/nasbench101_oo_trainSet_validation.pt --valid_pair data/nasbench101/oo_validation_pairs_k2_params_dist2e6.pt --dataset oo

The pretrained models will be saved in ./model/.

Extract embeddings on outside search space

# Adjacency encoding
python inference/inference_adj.py
# CATE encoding
python inference/inference.py --pretrained_path model/oo_model_best.pth.tar --train_data data/nasbench101/nasbench101_oo_testSet_split1.pt --valid_data data/nasbench101/nasbench101_oo_testSet_split2.pt --dataset oo_nasbench101

The extracted encodings will be saved as ./adj_oo_nasbench101.pt and ./cate_oo_nasbench101.pt.

Alternatively, you can download the data, pair indices, pretrained models, and extracted embeddings from here.

Run MLP predictor experiments on outside search space

for s in {1..500}; do python search_methods/oo_mlp.py --dim 27 --seed $s --init_size 16 --topk 5 --dataset oo_nasbench101 --output_path np_adj  --embedding_path adj_oo_nasbench101.pt; done
for s in {1..500}; do python search_methods/oo_mlp.py --dim 64 --seed $s --init_size 16 --topk 5 --dataset oo_nasbench101 --output_path np_cate  --embedding_path cate_oo_nasbench101.pt; done

Search results will be saved in ./oo_nasbench101.

Citation

If you find this useful for your work, please consider citing:

@InProceedings{yan2021cate,
  title = {CATE: Computation-aware Neural Architecture Encoding with Transformers},
  author = {Yan, Shen and Song, Kaiqiang and Liu, Fei and Zhang, Mi},
  booktitle = {ICML},
  year = {2021}
}
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding"

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
Code and models for "Rethinking Deep Image Prior for Denoising" (ICCV 2021)

DIP-denosing This is a code repo for Rethinking Deep Image Prior for Denoising (ICCV 2021). Addressing the relationship between Deep image prior and e

Computer Vision Lab. @ GIST 36 Dec 29, 2022
Tree-based Search Graph for Approximate Nearest Neighbor Search

TBSG: Tree-based Search Graph for Approximate Nearest Neighbor Search. TBSG is a graph-based algorithm for ANNS based on Cover Tree, which is also an

Fanxbin 2 Dec 27, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
Confident Semantic Ranking Loss for Part Parsing

Confident Semantic Ranking Loss for Part Parsing

Jiachen Xu 5 Oct 22, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
Pytorch code for ICRA'21 paper: "Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation"

Hierarchical Cross-Modal Agent for Robotics Vision-and-Language Navigation This repository is the pytorch implementation of our paper: Hierarchical Cr

43 Nov 21, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022