CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

Related tags

Deep Learningcorenet
Overview

CoReNet

CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objects live in a single consistent 3D coordinate frame relative to the camera, and they do not intersect in 3D. You can find more information in the following paper: CoReNet: Coherent 3D scene reconstruction from a single RGB image.

This repository contains source code, dataset pointers, and instructions for reproducing the results in the paper. If you find our code, data, or the paper useful, please consider citing

@InProceedings{popov20eccv,
  title="CoReNet: Coherent 3D Scene Reconstruction from a Single RGB Image",
  author="Popov, Stefan and Bauszat, Pablo and Ferrari, Vittorio", 
  booktitle="Computer Vision -- ECCV 2020",
  year="2020",
  doi="10.1007/978-3-030-58536-5_22"
}

Table of Contents

Installation

The code in this repository has been verified to work on Ubuntu 18.04 with the following dependencies:

# General APT packages
sudo apt install \
  python3-pip python3-virtualenv python python3.8-dev g++-8 \
  ninja-build git libboost-container-dev unzip

# NVIDIA related packages
sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1804/x86_64 /"
sudo apt install \
    nvidia-driver-455 nvidia-utils-455 `#driver, CUDA+GL libraries, utils` \
    cuda-runtime-10-1 cuda-toolkit-10-2 libcudnn7 `# Cuda and CUDNN`

To install CoReNet, you need to clone the code from GitHub and create a python virtual environment.

# Clone CoReNet
mkdir -p ~/prj/corenet
cd ~/prj/corenet
git clone https://github.com/google-research/corenet.git .

# Setup a python virtual environment
python3.8 -m virtualenv --python=/usr/bin/python3.8 venv_38
. venv_38/bin/activate
pip install -r requirements.txt

All instructions below assume that CoReNet lives in ~/prj/corenet, that this is the current working directory, and that the virtual environment is activated. You can also run CoReNet using the supplied docker file: ~/prj/corenet/Dockerfile.

Datasets

The CoReNet paper introduced several datasets with synthetic scenes. To reproduce the experiments in the paper you need to download them, using:

cd ~/prj/corenet
mkdir -p ~/prj/corenet/data/raw
for n in single pairs triplets; do  
  for s in train val test; do
    wget "https://storage.googleapis.com/gresearch/corenet/${n}.${s}.tar" \
      -O "data/raw/${n}.${s}.tar" 
    tar -xvf "data/raw/${n}.${s}.tar" -C data/ 
  done 
done

For each scene, these datasets provide the objects placement, a good view point, and two images rendered from it with a varying degree of realism. To download the actual object geometry, you need to download ShapeNetCore.v2.zip from ShapeNet's original site, unpack it, and convert the 3D meshes to CoReNet's binary format:

echo "Please download ShapeNetCore.v2.zip from ShapeNet's original site and "
echo "place it in ~/prj/corenet/data/raw/ before running the commands below"

cd ~/prj/corenet
unzip data/raw/ShapeNetCore.v2.zip -d data/raw/
PYTHONPATH=src python -m preprocess_shapenet \
  --shapenet_root=data/raw/ShapeNetCore.v2 \
  --output_root=data/shapenet_meshes

Models from the paper

To help reproduce the results from the CoReNet paper, we offer 5 pre-trained models from it (h5, h7, m7, m9, and y1; details below and in the paper). You can download and unpack these using:

cd ~/prj/corenet
wget https://storage.googleapis.com/gresearch/corenet/paper_tf_models.tgz \
  -O data/raw/paper_tf_models.tgz
tar xzvf data/raw/paper_tf_models.tgz -C data/

You can evaluate the downloaded models against their respective test sets using:

MODEL=h7  # Set to one of: h5, h7, m7, m9, y1

cd ~/prj/corenet
ulimit -n 4096
OMP_NUM_THREADS=2 CUDA_HOME=/usr/local/cuda-10.2 PYTHONPATH=src \
TF_CPP_MIN_LOG_LEVEL=1 PATH="${PATH}:${CUDA_HOME}/bin" \
FILL_VOXELS_CUDA_FLAGS=-ccbin=/usr/bin/gcc-8 \
python -m dist_launch --nproc_per_node=1 \
tf_model_eval --config_path=configs/paper_tf_models/${MODEL}.json5

To run on multiple GPUs in parallel, set --nproc_per_node to the number of desired GPUs. You can use CUDA_VISIBLE_DEVICES to control which GPUs exactly to use. CUDA_HOME, PATH, and FILL_VOXELS_CUDA_FLAGS control the just-in-time compiler for the voxelization operation.

Upon completion, quantitative results will be stored in ~/prj/corenet/output/paper_tf_models/${MODEL}/voxel_metrics.csv. Qualitative results will be available in ~/prj/corenet/output/paper_tf_models/${MODEL}/ in the form of PNG files.

This table summarizes the model attributes and their performance. More details can be found in the paper.

model dataset realism native resolution mean IoU
h5 single low 128 x 128 x 128 57.9%
h7 single high 128 x 128 x 128 59.1%
y1 single low 32 x 32 x 32 53.3%
m7 pairs high 128 x 128 x 128 43.1%
m9 triplets high 128 x 128 x 128 43.9%

Note that all models are evaluated on a grid resolution of 128 x 128 x 128, independent of their native resolution (see section 3.5 in the paper). The performance computed with this code matches the one reported in the paper for h5, h7, m7, and m9. For y1, the performance here is slightly higher (+0.2% IoU), as we no longer have the exact checkpoint used in the paper.

You can also run these models on individual images interactively, using the corenet_demo.ipynb notebook. For this, you need to also pip install jupyter-notebook in your virtual environment.

Training and evaluating a new model

We offer PyTorch code for training and evaluating models. To train a model, you need to (once) import the starting ResNet50 checkpoint:

cd ~/prj/corenet
PYTHONPATH=src python -m import_resnet50_checkpoint

Then run:

MODEL=h7  # Set to one of: h5, h7, m7, m9 

cd ~/prj/corenet
ulimit -n 4096
OMP_NUM_THREADS=2 CUDA_HOME=/usr/local/cuda-10.2 PYTHONPATH=src \
TF_CPP_MIN_LOG_LEVEL=1 PATH="${PATH}:${CUDA_HOME}/bin" \
FILL_VOXELS_CUDA_FLAGS=-ccbin=/usr/bin/gcc-8 \
python -m dist_launch --nproc_per_node=1 \
train --config_path=configs/models/h7.json5

Again, use --nproc_per_node and CUDA_VISIBLE_DEVICES to control parallel execution on multiple GPUs, CUDA_HOME, PATH, and FILL_VOXELS_CUDA_FLAGS control just-in-time compilation.

You can also evaluate individual checkpoints, for example:

cd ~/prj/corenet
ulimit -n 4096
OMP_NUM_THREADS=2 CUDA_HOME=/usr/local/cuda-10.2 PYTHONPATH=src \
TF_CPP_MIN_LOG_LEVEL=1 PATH="${PATH}:${CUDA_HOME}/bin" \
FILL_VOXELS_CUDA_FLAGS=-ccbin=/usr/bin/gcc-8 \
python -m dist_launch --nproc_per_node=1 eval \
  --cpt_path=output/models/h7/cpt/persistent/state_000000000.cpt \
  --output_path=output/eval_cpt_example \
  --eval_names_regex="short.*" \
  -jq '(.. | .config? | select(.num_qualitative_results != null) | .num_qualitative_results) |= 4' \

The -jq option limits the number of qualitative results to 4 (see also Further details section)

We currently offer checkpoints trained with this code for models h5, h7, m7, and m9, in this .tgz. These checkpoints achieve slightly better performance than the paper (see table below). This is likely due to a different distributed training strategy (synchronous here vs. asynchronous in the paper) and a different ML framework (PyTorch vs. TensorFlow in the paper).

h5 h7 m7 m9
mean IoU 60.2% 61.6% 45.0% 46.9%

Further details

Configuration files

The evaluation and training scripts are configured using JSON5 files that map to the TfModelEvalPipeline and TrainPipeline dataclasses in src/corenet/configuration.py. You can find description of the different configuration options in code comments, starting from these two classes.

You can also modify the configuration on the fly, through jq queries, as well as defines that change entries in the string_templates section. For example, the following options change the number of workers, and the prefetch factor of the data loaders, as well as the location of the data and the output directories:

... \
-jq "'(.. | .data_loader? | select(. != null) | .num_data_workers) |= 12'" \
    "'(.. | .data_loader? | select(. != null) | .prefetch_factor) |= 4'" \
-D 'data_dir=gs://some_gcs_bucket/data' \
   'output_dir=gs://some_gcs_bucket/output/models'

Dataset statistics

The table below summarizes the number of scenes in each dataset

single pairs triplets
train 883084 319981 80000
val 127286 45600 11400
test 246498 91194 22798

Licenses

The code and the checkpoints are released under the Apache 2.0 License. The datasets, the documentation, and the configuration files are licensed under the Creative Commons Attribution 4.0 International License.

Owner
Google Research
Google Research
PyTorch code for our paper "Image Super-Resolution with Non-Local Sparse Attention" (CVPR2021).

Image Super-Resolution with Non-Local Sparse Attention This repository is for NLSN introduced in the following paper "Image Super-Resolution with Non-

143 Dec 28, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022
Measuring Coding Challenge Competence With APPS

Measuring Coding Challenge Competence With APPS This is the repository for Measuring Coding Challenge Competence With APPS by Dan Hendrycks*, Steven B

Dan Hendrycks 218 Dec 27, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend

Hyperopt for solving CIFAR-100 with a convolutional neural network (CNN) built with Keras and TensorFlow, GPU backend This project acts as both a tuto

Guillaume Chevalier 103 Jul 22, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
Program your own vulkan.gpuinfo.org query in Python. Used to determine baseline hardware for WebGPU.

query-gpuinfo-data License This software is not presently released under a license. The data in data/ is obtained under CC BY 4.0 as specified there.

Kai Ninomiya 5 Jul 18, 2022
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

Sohil Shah 197 Nov 29, 2022
PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation.

ALiBi PyTorch implementation of Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation. Quickstart Clone this reposit

Jake Tae 4 Jul 27, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

Benedek Rozemberczki 69 Sep 22, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022