利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

Overview

写在前面

利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。

默认你已经完成了 yolov5的训练过程并得到了.pt模型权值文件。

本文目的仅是带着走通流程。

注意要对应yolov5和tensorrtx的版本。

  • ./yolov5包含yolov5训练以及模型初转化阶段的代码
  • ./model_process是将.wts模型转化为.engine模型的代码
  • ./detector是利用.engine模型进行前向推理阶段的代码

我的运行环境(注意OpenCV要选择适合你的visual studio的版本等问题):

win10

Visual Studio 2019

NVIDIA GeForce RTX 2060

opencv-3.4.3-vc14_vc15

cuda_10.2.89_441.22_win10

cudnn-10.2-windows10-x64-v7.6.5.32

TensorRT-7.0.0.11.Windows10.x86_64.cuda-10.2.cudnn7.6

cmake-3.21.2-windows-x86_64

上述环境的百度云(测试10、20系列可用):

链接:https://pan.baidu.com/s/1AyaloTzLap8X2hsJBvyeBw
提取码:dwr7

其他版本下载地址:

CUDA cudnn TensorRT CMake OpenCV

环境安装:

1、安装OpenCV并配置好环境变量

2、安装CUDA

一路默认。一般的安装路径为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2

3、安装cudnn和TensorRT

cudnn和TensorRT的安装仅是将下载的对应版本的压缩包解压并复制*.h、*.lib、*.dll到CUDA的安装路径。

1 将cuDNN压缩包解压

2 将cuda\bin中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin

3 将cuda\include中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include

4 将cuda\lib中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib

另外,

1 将TensorRT压缩包解压

2 将 TensorRT-7.0.0.11\include中头文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include

3 将TensorRT-7.0.0.11\lib中所有lib文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64

4 将TensorRT-7.0.0.11\lib中所有dll文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin

4、安装CMake软件备用

一、将训练阶段得到的.pt模型转化为.wts中间模型

把tensorrtx里面的yolov5\gen_wts.py加入到yolov5里面,执行

python gen_wts.py -w [.pt权值文件路径] 

runs\train\exp\weights\best.pt为训练过程生成的.pt模型,生成的best.wts会保存到同目录下,此best.wts待会会用到。

cuda版本每个电脑不一样

配置好的tensorrtx,包括Cmakelist.txt的设定以及dirent.h的配置。

若使用原作者的请参照tensorrtx源码https://github.com/wang-xinyu/tensorrtx ,配置过程中会遇到一些问题,挨个解决,问题不大。

1、在yolov5目录下新建build文件夹

2、修改CMakelist.txt

add_definitions(-DAPI_EXPORTS)

3、打开CMake

​​ generate后关闭

4、yolov5/include/dirent.h

​​ 也可使用我的配置好的

二、利用Cmake软件创建VS工程

修改CMakeLists.txt中此处为你的opencv安装路径。

配置好上方两个目录之后,点击Configure,根据你的环境选择配置,

点击Gnerate,警告可忽视,

现在关闭Cmake即可。

三、wts转化为engine

VS打开刚刚在bulid目录下创建的工程。

build处vs打开,生成

问题:我的模型只识别一个类,需要更改


cd {tensorrtx}/yolov5/

// update CLASS_NUM in yololayer.h if your model is trained on custom dataset

为1

生成项目。

把之前生成的best.wts复制到build\release目录里面

cmd里面运行:

.\test.exe -s .\best.wts best.engine s

运行成功在同文件夹下面会得到best.engine转换后的文件。之后的推理过程使用的都是这个文件。

测试:

.\yolov5.exe -d best.engine .\samples

至此,流程走完。

如果想要进一步封装,可以按照我的示例。

注释掉yolov5.cpp,并取消 几个文件的注释。重新生成项目。按照你的需求更改。

Owner
Helium
Helium
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Qu-ANTI-zation This repository contains the code for reproducing the results of our paper: Qu-ANTI-zation: Exploiting Quantization Artifacts for Achie

Secure AI Systems Lab 8 Mar 26, 2022
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion.

OstrichRL This is the repository accompanying the paper OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-mechanical Locomotion. It contain

Vittorio La Barbera 51 Nov 17, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly

Ultra-Data-Efficient GAN Training: Drawing A Lottery Ticket First, Then Training It Toughly Code for this paper Ultra-Data-Efficient GAN Tra

VITA 77 Oct 05, 2022
Provide partial dates and retain the date precision through processing

Prefix date parser This is a helper class to parse dates with varied degrees of precision. For example, a data source might state a date as 2001, 2001

Friedrich Lindenberg 13 Dec 14, 2022
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

64 Dec 16, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022