利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

Overview

写在前面

利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。

默认你已经完成了 yolov5的训练过程并得到了.pt模型权值文件。

本文目的仅是带着走通流程。

注意要对应yolov5和tensorrtx的版本。

  • ./yolov5包含yolov5训练以及模型初转化阶段的代码
  • ./model_process是将.wts模型转化为.engine模型的代码
  • ./detector是利用.engine模型进行前向推理阶段的代码

我的运行环境(注意OpenCV要选择适合你的visual studio的版本等问题):

win10

Visual Studio 2019

NVIDIA GeForce RTX 2060

opencv-3.4.3-vc14_vc15

cuda_10.2.89_441.22_win10

cudnn-10.2-windows10-x64-v7.6.5.32

TensorRT-7.0.0.11.Windows10.x86_64.cuda-10.2.cudnn7.6

cmake-3.21.2-windows-x86_64

上述环境的百度云(测试10、20系列可用):

链接:https://pan.baidu.com/s/1AyaloTzLap8X2hsJBvyeBw
提取码:dwr7

其他版本下载地址:

CUDA cudnn TensorRT CMake OpenCV

环境安装:

1、安装OpenCV并配置好环境变量

2、安装CUDA

一路默认。一般的安装路径为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2

3、安装cudnn和TensorRT

cudnn和TensorRT的安装仅是将下载的对应版本的压缩包解压并复制*.h、*.lib、*.dll到CUDA的安装路径。

1 将cuDNN压缩包解压

2 将cuda\bin中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin

3 将cuda\include中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include

4 将cuda\lib中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib

另外,

1 将TensorRT压缩包解压

2 将 TensorRT-7.0.0.11\include中头文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include

3 将TensorRT-7.0.0.11\lib中所有lib文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64

4 将TensorRT-7.0.0.11\lib中所有dll文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin

4、安装CMake软件备用

一、将训练阶段得到的.pt模型转化为.wts中间模型

把tensorrtx里面的yolov5\gen_wts.py加入到yolov5里面,执行

python gen_wts.py -w [.pt权值文件路径] 

runs\train\exp\weights\best.pt为训练过程生成的.pt模型,生成的best.wts会保存到同目录下,此best.wts待会会用到。

cuda版本每个电脑不一样

配置好的tensorrtx,包括Cmakelist.txt的设定以及dirent.h的配置。

若使用原作者的请参照tensorrtx源码https://github.com/wang-xinyu/tensorrtx ,配置过程中会遇到一些问题,挨个解决,问题不大。

1、在yolov5目录下新建build文件夹

2、修改CMakelist.txt

add_definitions(-DAPI_EXPORTS)

3、打开CMake

​​ generate后关闭

4、yolov5/include/dirent.h

​​ 也可使用我的配置好的

二、利用Cmake软件创建VS工程

修改CMakeLists.txt中此处为你的opencv安装路径。

配置好上方两个目录之后,点击Configure,根据你的环境选择配置,

点击Gnerate,警告可忽视,

现在关闭Cmake即可。

三、wts转化为engine

VS打开刚刚在bulid目录下创建的工程。

build处vs打开,生成

问题:我的模型只识别一个类,需要更改


cd {tensorrtx}/yolov5/

// update CLASS_NUM in yololayer.h if your model is trained on custom dataset

为1

生成项目。

把之前生成的best.wts复制到build\release目录里面

cmd里面运行:

.\test.exe -s .\best.wts best.engine s

运行成功在同文件夹下面会得到best.engine转换后的文件。之后的推理过程使用的都是这个文件。

测试:

.\yolov5.exe -d best.engine .\samples

至此,流程走完。

如果想要进一步封装,可以按照我的示例。

注释掉yolov5.cpp,并取消 几个文件的注释。重新生成项目。按照你的需求更改。

Owner
Helium
Helium
Off-policy continuous control in PyTorch, with RDPG, RTD3 & RSAC

arXiv technical report soon available. we are updating the readme to be as comprehensive as possible Please ask any questions in Issues, thanks. Intro

Zhihan 31 Dec 30, 2022
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Denoising Normalizing Flow

Denoising Normalizing Flow Christian Horvat and Jean-Pascal Pfister 2021 We combine Normalizing Flows (NFs) and Denoising Auto Encoder (DAE) by introd

CHrvt 17 Oct 15, 2022
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

ETHZ V4RL 183 Dec 27, 2022
Linear Variational State Space Filters

Linear Variational State Space Filters To set up the environment, use the provided scripts in the docker/ folder to build and run the codebase inside

0 Dec 13, 2021
Framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample resolution

Sample-specific Bayesian Networks A framework for estimating the structures and parameters of Bayesian networks (DAGs) at per-sample or per-patient re

Caleb Ellington 1 Sep 23, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
[ICCV 2021 Oral] Just Ask: Learning to Answer Questions from Millions of Narrated Videos

Just Ask: Learning to Answer Questions from Millions of Narrated Videos Webpage • Demo • Paper This repository provides the code for our paper, includ

Antoine Yang 87 Jan 05, 2023
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
The code of paper "Block Modeling-Guided Graph Convolutional Neural Networks".

Block Modeling-Guided Graph Convolutional Neural Networks This repository contains the demo code of the paper: Block Modeling-Guided Graph Convolution

22 Dec 08, 2022
This application explain how we can easily integrate Deepface framework with Python Django application

deepface_suite This application explain how we can easily integrate Deepface framework with Python Django application install redis cache install requ

Mohamed Naji Aboo 3 Apr 18, 2022